IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v122y2024ics0305048323001056.html
   My bibliography  Save this article

Scheduling aerial resource operations for the extinction of large-scale wildfires

Author

Listed:
  • Skorin-Kapov, Nina
  • Mesarić, Luka
  • García, Fernando Pereñíguez
  • Skorin-Kapov, Lea

Abstract

The significant increase in large-scale wildfire events in recent decades, caused primarily by climate change, has resulted in a growing number of aerial resources being used in suppression efforts. Present-day management lacks efficient and scalable algorithms for complex aerial resource allocation and scheduling for the extinction of such fires, which is crucial to ensuring safety while maximizing the efficiency of operations. In this work, we present a Mixed Integer Linear Programming (MILP) optimization model tailored to large-scale wildfires for the daily scheduling of aerial operations. The main objective is to achieve a prioritized target water flow over all areas of operation and all time periods. Minimal target completion across individual areas and time periods and total water output are also maximized as secondary and ternary objectives, respectively. An efficient and scalable multi-start heuristic, combining a randomized greedy approach with simulated annealing employing large neighborhood search techniques, is proposed for larger instances. A diverse set of problem instances is generated with varying sizes and extinction strategies to test the approaches. Results indicate that the heuristic can achieve (near)-optimal solutions for smaller instances solvable by the MILP, and gives solutions approaching target water flows for larger problem sizes. The algorithm is parallelizable and has been shown to give promising results in a small number of iterations, making it applicable for both night-before planning and, more time-sensitive, early-morning scheduling.

Suggested Citation

  • Skorin-Kapov, Nina & Mesarić, Luka & García, Fernando Pereñíguez & Skorin-Kapov, Lea, 2024. "Scheduling aerial resource operations for the extinction of large-scale wildfires," Omega, Elsevier, vol. 122(C).
  • Handle: RePEc:eee:jomega:v:122:y:2024:i:c:s0305048323001056
    DOI: 10.1016/j.omega.2023.102941
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048323001056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2023.102941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James I. MacLellan & David L. Martell, 1996. "Basing Airtankers for Forest Fire Control in Ontario," Operations Research, INFORMS, vol. 44(5), pages 677-686, October.
    2. Shahparvari, Shahrooz & Abbasi, Babak & Chhetri, Prem, 2017. "Possibilistic scheduling routing for short-notice bushfire emergency evacuation under uncertainties: An Australian case study," Omega, Elsevier, vol. 72(C), pages 96-117.
    3. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2023. "Distributionally robust chance-constrained programming for multi-period emergency resource allocation and vehicle routing in disaster response operations," Omega, Elsevier, vol. 120(C).
    4. Chinneck, J. W. & Moll, R. H. H., 1995. "Processing network models for forest management," Omega, Elsevier, vol. 23(5), pages 499-510, October.
    5. Mendes, André Bergsten & e Alvelos, Filipe Pereira, 2023. "Iterated local search for the placement of wildland fire suppression resources," European Journal of Operational Research, Elsevier, vol. 304(3), pages 887-900.
    6. Cacchiani, Valentina & Salazar-González, Juan-José, 2020. "Heuristic approaches for flight retiming in an integrated airline scheduling problem of a regional carrier," Omega, Elsevier, vol. 91(C).
    7. Dimopoulou, Maria & Giannikos, Ioannis, 2004. "Towards an integrated framework for forest fire control," European Journal of Operational Research, Elsevier, vol. 152(2), pages 476-486, January.
    8. Linda V. Green & Peter J. Kolesar, 2004. "ANNIVERSARY ARTICLE: Improving Emergency Responsiveness with Management Science," Management Science, INFORMS, vol. 50(8), pages 1001-1014, August.
    9. Nada Petrovic & David L Alderson & Jean M Carlson, 2012. "Dynamic Resource Allocation in Disaster Response: Tradeoffs in Wildfire Suppression," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
    10. Baselli, Gianluca & Contreras, Felipe & Lillo, Matías & Marín, Magdalena & Carrasco, Rodrigo A., 2020. "Optimal decisions for salvage logging after wildfires," Omega, Elsevier, vol. 96(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marion Rauner & Michaela Schaffhauser-Linzatti & Helmut Niessner, 2012. "Resource planning for ambulance services in mass casualty incidents: a DES-based policy model," Health Care Management Science, Springer, vol. 15(3), pages 254-269, September.
    2. James Minas & John Hearne & David Martell, 2015. "An integrated optimization model for fuel management and fire suppression preparedness planning," Annals of Operations Research, Springer, vol. 232(1), pages 201-215, September.
    3. Nabil Channouf & Pierre L’Ecuyer & Armann Ingolfsson & Athanassios Avramidis, 2007. "The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta," Health Care Management Science, Springer, vol. 10(1), pages 25-45, February.
    4. Marcos Singer & Patricio Donoso & Natalia Jadue, 2004. "Evaluacion De Las Oportunidades De Mejoramiento De La Logistica Directa De Emergencia," Abante, Escuela de Administracion. Pontificia Universidad Católica de Chile., vol. 7(2), pages 179-209.
    5. Nagarajan, Magesh & Shaw, Duncan & Albores, Pavel, 2012. "Disseminating a warning message to evacuate: A simulation study of the behaviour of neighbours," European Journal of Operational Research, Elsevier, vol. 220(3), pages 810-819.
    6. Sperling, Martina & Schryen, Guido, 2022. "Decision support for disaster relief: Coordinating spontaneous volunteers," European Journal of Operational Research, Elsevier, vol. 299(2), pages 690-705.
    7. Baixun Li & Meng Li & Chao Liang, 2023. "Cry‐wolf syndrome in recommendation," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 347-358, February.
    8. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    9. Miren Bilbao & Sergio Gil-López & Javier Ser & Sancho Salcedo-Sanz & Mikel Sánchez-Ponte & Antonio Arana-Castro, 2014. "Novel hybrid heuristics for an extension of the dynamic relay deployment problem over disaster areas," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 997-1016, October.
    10. Avci, Mualla Gonca & Avci, Mustafa & Battarra, Maria & Erdoğan, Güneş, 2024. "The wildfire suppression problem with multiple types of resources," European Journal of Operational Research, Elsevier, vol. 316(2), pages 488-502.
    11. Khakzad, Nima, 2021. "Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    12. Adam Behrendt & Vineet M. Payyappalli & Jun Zhuang, 2019. "Modeling the Cost Effectiveness of Fire Protection Resource Allocation in the United States: Models and a 1980–2014 Case Study," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1358-1381, June.
    13. Salazar-González, Juan-José, 2021. "Designing optimal masks for a multi-object spectrometer," Omega, Elsevier, vol. 103(C).
    14. Xu, Yifan & Wandelt, Sebastian & Sun, Xiaoqian, 2021. "Airline integrated robust scheduling with a variable neighborhood search based heuristic," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 181-203.
    15. Dimopoulou, Maria & Giannikos, Ioannis, 2004. "Towards an integrated framework for forest fire control," European Journal of Operational Research, Elsevier, vol. 152(2), pages 476-486, January.
    16. Sumi Kim & Seongmoon Kim, 2015. "Differentiated waiting time management according to patient class in an emergency care center using an open Jackson network integrated with pooling and prioritizing," Annals of Operations Research, Springer, vol. 230(1), pages 35-55, July.
    17. Afshartous, David & Guan, Yongtao & Mehrotra, Anuj, 2009. "US Coast Guard air station location with respect to distress calls: A spatial statistics and optimization based methodology," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1086-1096, August.
    18. Alfonso J. Pedraza-Martinez & Sameer Hasija & Luk N. Van Wassenhove, 2020. "Fleet Coordination in Decentralized Humanitarian Operations Funded by Earmarked Donations," Operations Research, INFORMS, vol. 68(4), pages 984-999, July.
    19. Phillip R. Jenkins & Matthew J. Robbins & Brian J. Lunday, 2018. "Examining military medical evacuation dispatching policies utilizing a Markov decision process model of a controlled queueing system," Annals of Operations Research, Springer, vol. 271(2), pages 641-678, December.
    20. Hongzhe Zhang & Xiaohang Zhao & Xiao Fang & Bintong Chen, 2024. "Proactive Resource Request for Disaster Response: A Deep Learning-Based Optimization Model," Information Systems Research, INFORMS, vol. 35(2), pages 528-550, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:122:y:2024:i:c:s0305048323001056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.