IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v131y2025ics0305048324001956.html
   My bibliography  Save this article

Pre-occurrence location-allocation-configuration of maritime emergency resources considering shipborne unmanned aerial vehicle (UAV)

Author

Listed:
  • Hu, Yuzhen
  • Wang, Min
  • Guo, Xinghai
  • Lukinykh, Valery F.

Abstract

Demand for maritime transportation has constantly increased throughout recent years due to its high capacity, extensive coverage, high safety, and so on. However, the growth has also contributed to a rise in maritime accidents, highlighting the need for developing maritime emergency management strategies. In maritime emergency management, resource location-allocation-configuration is the most important and inseparable preparedness action before disasters, directly deciding the quality of emergency rescue operations. Traditional ship-only rescue is frequently both cost-intensive and time-consuming, seriously affecting rescue performance. This study introduces an innovative shipborne UAV operation system to address these limitations. Firstly, a multi-objective mixed-integer nonlinear programming model is established to minimize total rescue time and cost by considering the uncertain maritime environment, continuous docking placements of ships, UAV flight distance, rescue station capacity, etc. Secondly, to efficiently obtain an execution plan, a two-stage algorithm is proposed to facilitate our mission optimization model. Large-scale simulated instances and a real case study demonstrate that (i) the proposed algorithm can solve the model efficiently. (ii) the application of shipborne UAV operation system in maritime emergencies shows a significant improvement in time and cost compared to ship-only system. (iii) it is necessary to consider the uncertain maritime environment when solving emergency management problems. Moreover, extensive parameter sensitivity analysis provides managerial insights into the impact of various factors on the optimization outcomes. We also explore deeper insights that may benefit maritime administration's decision support.

Suggested Citation

  • Hu, Yuzhen & Wang, Min & Guo, Xinghai & Lukinykh, Valery F., 2025. "Pre-occurrence location-allocation-configuration of maritime emergency resources considering shipborne unmanned aerial vehicle (UAV)," Omega, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:jomega:v:131:y:2025:i:c:s0305048324001956
    DOI: 10.1016/j.omega.2024.103231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048324001956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:131:y:2025:i:c:s0305048324001956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.