IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i2p488-502.html
   My bibliography  Save this article

The wildfire suppression problem with multiple types of resources

Author

Listed:
  • Avci, Mualla Gonca
  • Avci, Mustafa
  • Battarra, Maria
  • Erdoğan, Güneş

Abstract

The frequency and impact of wildfires have considerably increased in the past decade, due to the extreme weather conditions as well as the increased population density. The aim of this study is to introduce, model, and solve a wildfire suppression problem that involves multiple types of fire suppression resources and their operational characteristics. Two integer programming (IP) formulations, a basic IP and its reformulation with combinatorial Benders’ cuts, are presented. The performances of the proposed formulations are evaluated on a set of randomly generated instances. The results indicate that the proposed formulations are able to obtain high quality upper and lower bounds. Extensive numerical experiments are performed to analyse the effects of several operational constraints on the computational performance of the models. A case study arising in Yatağan district of Muğla province of Türkiye is presented.

Suggested Citation

  • Avci, Mualla Gonca & Avci, Mustafa & Battarra, Maria & Erdoğan, Güneş, 2024. "The wildfire suppression problem with multiple types of resources," European Journal of Operational Research, Elsevier, vol. 316(2), pages 488-502.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:2:p:488-502
    DOI: 10.1016/j.ejor.2024.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724001796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eghbal Rashidi & Hugh Medal & Aaron Hoskins, 2018. "An attacker‐defender model for analyzing the vulnerability of initial attack in wildfire suppression," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(2), pages 120-134, March.
    2. Smith, J. Cole & Song, Yongjia, 2020. "A survey of network interdiction models and algorithms," European Journal of Operational Research, Elsevier, vol. 283(3), pages 797-811.
    3. Mendes, André Bergsten & e Alvelos, Filipe Pereira, 2023. "Iterated local search for the placement of wildland fire suppression resources," European Journal of Operational Research, Elsevier, vol. 304(3), pages 887-900.
    4. Boysen, Nils & Emde, Simon & Schwerdfeger, Stefan, 2022. "Crowdshipping by employees of distribution centers: Optimization approaches for matching supply and demand," European Journal of Operational Research, Elsevier, vol. 296(2), pages 539-556.
    5. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    6. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    7. Rashidi, Eghbal & Medal, Hugh & Gordon, Jason & Grala, Robert & Varner, Morgan, 2017. "A maximal covering location-based model for analyzing the vulnerability of landscapes to wildfires: Assessing the worst-case scenario," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1095-1105.
    8. Erdoğan, Güneş & Battarra, Maria & Wolfler Calvo, Roberto, 2015. "An exact algorithm for the static rebalancing problem arising in bicycle sharing systems," European Journal of Operational Research, Elsevier, vol. 245(3), pages 667-679.
    9. Demir, Murat, 2007. "Impacts, management and functional planning criterion of forest road network system in Turkey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(1), pages 56-68, January.
    10. Bhuiyan, Tanveer Hossain & Moseley, Maxwell C. & Medal, Hugh R. & Rashidi, Eghbal & Grala, Robert K., 2019. "A stochastic programming model with endogenous uncertainty for incentivizing fuel reduction treatment under uncertain landowner behavior," European Journal of Operational Research, Elsevier, vol. 277(2), pages 699-718.
    11. O. Zambon, Mauricio J. & J. de Rezende, Pedro & C. de Souza, Cid, 2019. "Solving the geometric firefighter routing problem via integer programming," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1090-1101.
    12. Matsypura, Dmytro & Prokopyev, Oleg A. & Zahar, Aizat, 2018. "Wildfire fuel management: Network-based models and optimization of prescribed burning," European Journal of Operational Research, Elsevier, vol. 264(2), pages 774-796.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno P. Bruck & Fábio Cruz & Manuel Iori & Anand Subramanian, 2019. "The Static Bike Sharing Rebalancing Problem with Forbidden Temporary Operations," Transportation Science, INFORMS, vol. 53(3), pages 882-896, May.
    2. Bhuiyan, Tanveer Hossain & Moseley, Maxwell C. & Medal, Hugh R. & Rashidi, Eghbal & Grala, Robert K., 2019. "A stochastic programming model with endogenous uncertainty for incentivizing fuel reduction treatment under uncertain landowner behavior," European Journal of Operational Research, Elsevier, vol. 277(2), pages 699-718.
    3. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    4. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    6. Cai, Yutong & Ong, Ghim Ping & Meng, Qiang, 2022. "Dynamic bicycle relocation problem with broken bicycles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    7. Cerulli, Martina & Serra, Domenico & Sorgente, Carmine & Archetti, Claudia & Ljubić, Ivana, 2023. "Mathematical programming formulations for the Collapsed k-Core Problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 56-72.
    8. Tapia, Rodrigo J. & Kourounioti, Ioanna & Thoen, Sebastian & de Bok, Michiel & Tavasszy, Lori, 2023. "A disaggregate model of passenger-freight matching in crowdshipping services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    9. Zhang, J. & Meng, M. & Wang, David, Z.W., 2019. "A dynamic pricing scheme with negative prices in dockless bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 201-224.
    10. Linlin Yu & Jiafeng Wu & Yuming Cheng & Gaojun Meng & Shuyu Chen & Yang Lu & Ke Xu, 2024. "Control Strategy for Wind Farms-Energy Storage Participation in Primary Frequency Regulation Considering Wind Turbine Operation State," Energies, MDPI, vol. 17(14), pages 1-13, July.
    11. De Toni, Andrea & Vizzarri, Matteo & Di Febbraro, Mirko & Lasserre, Bruno & Noguera, Joan & Di Martino, Paolo, 2021. "Aligning Inner Peripheries with rural development in Italy: Territorial evidence to support policy contextualization," Land Use Policy, Elsevier, vol. 100(C).
    12. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    13. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    14. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    15. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    16. Bulhões, Teobaldo & Subramanian, Anand & Erdoğan, Güneş & Laporte, Gilbert, 2018. "The static bike relocation problem with multiple vehicles and visits," European Journal of Operational Research, Elsevier, vol. 264(2), pages 508-523.
    17. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    18. Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
    19. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    20. Jérémy Omer & Michael Poss, 2021. "Identifying relatively irreducible infeasible subsystems of linear inequalities," Annals of Operations Research, Springer, vol. 304(1), pages 361-379, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:2:p:488-502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.