IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v103y2021ics0305048320307374.html
   My bibliography  Save this article

The impact of subsidies in a transboundary pollution game with myopic players

Author

Listed:
  • Li, Liming
  • Chen, Weidong

Abstract

In this paper, we study the impact of green subsidies in an international transboundary pollution game. In the game, the developed country only suffers from paying the subsidy but does not reduce emissions, while developing countries reduce their emissions after receive the subsidy. Furthermore, we assume that developing countries can be myopic, which means that they choose their reduction policy without taking into account the future levels of pollution. The results show that when some of the developing countries are myopic, the optimal reduction policy is much lower than that in the case where all of the developing countries are farsighted. The level of pollution is much higher for the former case than the latter one. However, for developed countries, the presence of a certain number of myopic developing countries can maximize their payoffs. Finally, we find the critical condition for a farsighted developing country to adopt a myopic framework. The findings of this paper could offer valuable guidances for climate policy makers.

Suggested Citation

  • Li, Liming & Chen, Weidong, 2021. "The impact of subsidies in a transboundary pollution game with myopic players," Omega, Elsevier, vol. 103(C).
  • Handle: RePEc:eee:jomega:v:103:y:2021:i:c:s0305048320307374
    DOI: 10.1016/j.omega.2020.102383
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048320307374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2020.102383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Zeeuw, Aart, 2008. "Dynamic effects on the stability of international environmental agreements," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 163-174, March.
    2. Bernard M. Hoekman & Keith E. Maskus & Kamal Saggi, 2023. "Transfer of Technology to Developing Countries: Unilateral and Multilateral Policy Options," World Scientific Book Chapters, in: Kamal Saggi (ed.), Technology Transfer, Foreign Direct Investment, and the Protection of Intellectual Property in the Global Economy, chapter 5, pages 127-142, World Scientific Publishing Co. Pte. Ltd..
    3. Benchekroun, Hassan & Martín-Herrán, Guiomar, 2016. "The impact of foresight in a transboundary pollution game," European Journal of Operational Research, Elsevier, vol. 251(1), pages 300-309.
    4. Asbjørn Aaheim & Rajiv Chaturvedi & Anitha Sagadevan, 2011. "Integrated modelling approaches to analysis of climate change impacts on forests and forest management," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(2), pages 247-266, February.
    5. Frederick Ploeg & Aart Zeeuw, 1992. "International aspects of pollution control," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(2), pages 117-139, March.
    6. David G. Victor, 2006. "Toward Effective International Cooperation on Climate Change: Numbers, Interests and Institutions," Global Environmental Politics, MIT Press, vol. 6(3), pages 90-103, August.
    7. Hong, Fuhai & Karp, Larry, 2012. "International Environmental Agreements with mixed strategies and investment," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 685-697.
    8. Dockner Engelbert J. & Van Long Ngo, 1993. "International Pollution Control: Cooperative versus Noncooperative Strategies," Journal of Environmental Economics and Management, Elsevier, vol. 25(1), pages 13-29, July.
    9. Yang, Jin & Chen, Bin, 2014. "Carbon footprint estimation of Chinese economic sectors based on a three-tier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 499-507.
    10. Bertinelli, Luisito & Camacho, Carmen & Zou, Benteng, 2014. "Carbon capture and storage and transboundary pollution: A differential game approach," European Journal of Operational Research, Elsevier, vol. 237(2), pages 721-728.
    11. Ansink, Erik & Weikard, Hans-Peter & Withagen, Cees, 2019. "International environmental agreements with support," Journal of Environmental Economics and Management, Elsevier, vol. 97(C), pages 241-252.
    12. Michèle Breton & Lucia Sbragia & Georges Zaccour, 2010. "A Dynamic Model for International Environmental Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 25-48, January.
    13. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    14. Wei, Zhongjun & Yi, Yongxi & Fu, Chunyan, 2019. "Cournot competition and “green” innovation under efficiency-improving learning by doing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    15. Kossioris, G. & Plexousakis, M. & Xepapadeas, A. & de Zeeuw, A. & Mäler, K.-G., 2008. "Feedback Nash equilibria for non-linear differential games in pollution control," Journal of Economic Dynamics and Control, Elsevier, vol. 32(4), pages 1312-1331, April.
    16. Yongxi Yi & Rongwei Xu & Sheng Zhang, 2017. "A Cooperative Stochastic Differential Game of Transboundary Industrial Pollution between Two Asymmetric Nations," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-10, April.
    17. de Coninck, Heleen & Fischer, Carolyn & Newell, Richard G. & Ueno, Takahiro, 2008. "International technology-oriented agreements to address climate change," Energy Policy, Elsevier, vol. 36(1), pages 335-356, January.
    18. Hong, Fuhai & Karp, Larry, 2012. "International Environmental Agreements with mixed strategies and investment," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 685-697.
    19. Bakalova, Irina & Eyckmans, Johan, 2019. "Simulating the impact of heterogeneity on stability and effectiveness of international environmental agreements," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1151-1162.
    20. Kamal Saggi, 2002. "Trade, Foreign Direct Investment, and International Technology Transfer: A Survey," The World Bank Research Observer, World Bank, vol. 17(2), pages 191-235, September.
    21. Scott Barrett & Robert Stavins, 2003. "Increasing Participation and Compliance in International Climate Change Agreements," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 3(4), pages 349-376, December.
    22. Li, Shoude & Pan, Xiaojun, 2014. "A dynamic general equilibrium model of pollution abatement under learning by doing," Economics Letters, Elsevier, vol. 122(2), pages 285-288.
    23. Rubio, Santiago J. & Ulph, Alistair, 2007. "An infinite-horizon model of dynamic membership of international environmental agreements," Journal of Environmental Economics and Management, Elsevier, vol. 54(3), pages 296-310, November.
    24. Frederick Ploeg & Aart Zeeuw, 1992. "International aspects of pollution control," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(2), pages 117-139, March.
    25. Santiago Rubio & Begoña Casino, 2005. "Self-enforcing international environmental agreements with a stock pollutant," Spanish Economic Review, Springer;Spanish Economic Association, vol. 7(2), pages 89-109, June.
    26. Chen, Wenbo, 2018. "Retailer-driven carbon emission abatement with consumer environmental awareness and carbon tax: Revenue-sharing versus Cost-sharingAuthor-Name: Yang, Huixiao," Omega, Elsevier, vol. 78(C), pages 179-191.
    27. Rubio, Santiago J. & Casino, Begona, 2002. "A note on cooperative versus non-cooperative strategies in international pollution control," Resource and Energy Economics, Elsevier, vol. 24(3), pages 251-261, June.
    28. Ehtamo, Harri & Hamalainen, Raimo P., 1993. "A cooperative incentive equilibrium for a resource management problem," Journal of Economic Dynamics and Control, Elsevier, vol. 17(4), pages 659-678, July.
    29. Chang, Shuhua & Qin, Weihua & Wang, Xinyu, 2018. "Dynamic optimal strategies in transboundary pollution game under learning by doing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 139-147.
    30. Nahid Masoudi & Marc Santugini & Georges Zaccour, 2016. "A Dynamic Game of Emissions Pollution with Uncertainty and Learning," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 349-372, July.
    31. Yang, Zili, 2003. "Reevaluation and renegotiation of climate change coalitions--a sequential closed-loop game approach," Journal of Economic Dynamics and Control, Elsevier, vol. 27(9), pages 1563-1594, July.
    32. Monni, S. & Syri, S., 2011. "Weekly greenhouse gas emissions of municipalities: Methods and comparisons," Energy Policy, Elsevier, vol. 39(9), pages 4755-4765, September.
    33. Tahvonen, Olli, 1994. "Carbon dioxide abatement as a differential game," European Journal of Political Economy, Elsevier, vol. 10(4), pages 685-705, December.
    34. Markandya, A. & Antimiani, A. & Costantini, V. & Martini, C. & Palma, A. & Tommasino, M.C., 2015. "Analyzing Trade-offs in International Climate Policy Options: The Case of the Green Climate Fund," World Development, Elsevier, vol. 74(C), pages 93-107.
    35. Robert Mendelsohn & Larry Williams, 2004. "Comparing Forecasts of the Global Impacts of Climate Change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(4), pages 315-333, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xinyu & Zhang, Shuhua & Hao, Wenwei, 2022. "Myopic vs. foresighted behaviors in a transboundary pollution game with abatement policy and emission permits trading," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Chen, Rui & Meng, Qiang & Yu, Jiayi Joey, 2023. "Optimal government incentives to improve the new technology adoption: Subsidizing infrastructure investment or usage?," Omega, Elsevier, vol. 114(C).
    3. Kogan, Konstantin & El Ouardighi, Fouad, 2024. "Environmental sustainability under production competition with costly adjustments: An appraisal of firms’ behavior with regard to pollution dynamics," Omega, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan Benchekroun & Amrita Ray Chaudhuri, 2015. "Cleaner Technologies and the Stability of International Environmental Agreements," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 17(6), pages 887-915, December.
    2. Michèle Breton & Lucia Sbragia & Georges Zaccour, 2010. "A Dynamic Model for International Environmental Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 25-48, January.
    3. Benchekroun, Hassan & Martín-Herrán, Guiomar, 2016. "The impact of foresight in a transboundary pollution game," European Journal of Operational Research, Elsevier, vol. 251(1), pages 300-309.
    4. Marco Battaglini & Bård Harstad, 2016. "Participation and Duration of Environmental Agreements," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 160-204.
    5. Calvo, Emilio & Rubio, Santiago J., 2013. "Dynamic Models of International Environmental Agreements: A Differential Game Approach," International Review of Environmental and Resource Economics, now publishers, vol. 6(4), pages 289-339, April.
    6. Fouad El Ouardighi & Konstantin Kogan & Giorgio Gnecco & Marcello Sanguineti, 2020. "Transboundary pollution control and environmental absorption efficiency management," Annals of Operations Research, Springer, vol. 287(2), pages 653-681, April.
    7. Bård Harstad, 2016. "The Dynamics of Climate Agreements," Journal of the European Economic Association, European Economic Association, vol. 14(3), pages 719-752.
    8. Fouad El Ouardighi & Konstantin Kogan & Giorgio Gnecco & Marcello Sanguineti, 2018. "Commitment-Based Equilibrium Environmental Strategies Under Time-Dependent Absorption Efficiency," Group Decision and Negotiation, Springer, vol. 27(2), pages 235-249, April.
    9. Akihiko Yanase & Keita Kamei, 2022. "Dynamic Game of International Pollution Control with General Oligopolistic Equilibrium: Neary Meets Dockner and Long," Dynamic Games and Applications, Springer, vol. 12(3), pages 751-783, September.
    10. Javier Frutos & Víctor Gatón & Paula M. López-Pérez & Guiomar Martín-Herrán, 2022. "Investment in Cleaner Technologies in a Transboundary Pollution Dynamic Game: A Numerical Investigation," Dynamic Games and Applications, Springer, vol. 12(3), pages 813-843, September.
    11. Shuhua Chang & Suresh P. Sethi & Xinyu Wang, 2018. "Optimal Abatement and Emission Permit Trading Policies in a Dynamic Transboundary Pollution Game," Dynamic Games and Applications, Springer, vol. 8(3), pages 542-572, September.
    12. Xiao, Lu & Liu, Jianyue & Ge, Jinwen, 2021. "Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Wang, Xinyu & Zhang, Shuhua & Hao, Wenwei, 2022. "Myopic vs. foresighted behaviors in a transboundary pollution game with abatement policy and emission permits trading," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    14. Javier Frutos & Guiomar Martín-Herrán, 2015. "Does Flexibility Facilitate Sustainability of Cooperation Over Time? A Case Study from Environmental Economics," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 657-677, May.
    15. Yi, Yongxi & Xu, Rongwei & Zhang, Sheng, 2019. "A differential game of R&D investment for pollution abatement in different market structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 587-600.
    16. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi & Ted Loch-Temzelides & Cristiano Ricci, 2025. "An integral transformation approach to differential games: a climate model application," LIDAM Discussion Papers IRES 2025001, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    17. Colombo, Luca & Labrecciosa, Paola & Van Long, Ngo, 2022. "A dynamic analysis of international environmental agreements under partial cooperation," European Economic Review, Elsevier, vol. 143(C).
    18. Louis-Gaëtan Giraudet & Céline Guivarch, 2016. "Global warming as an asymmetric public bad," Working Papers 2016.26, FAERE - French Association of Environmental and Resource Economists.
    19. Hao Xu & Deqing Tan, 2023. "Optimal Abatement Technology Licensing in a Dynamic Transboundary Pollution Game: Fixed Fee Versus Royalty," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 905-935, March.
    20. Kossioris, G. & Plexousakis, M. & Xepapadeas, A. & de Zeeuw, A. & Mäler, K.-G., 2008. "Feedback Nash equilibria for non-linear differential games in pollution control," Journal of Economic Dynamics and Control, Elsevier, vol. 32(4), pages 1312-1331, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:103:y:2021:i:c:s0305048320307374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.