IDEAS home Printed from https://ideas.repec.org/a/bla/jpbect/v17y2015i6p887-915.html
   My bibliography  Save this article

Cleaner Technologies and the Stability of International Environmental Agreements

Author

Listed:
  • HASSAN BENCHEKROUN
  • AMRITA RAY CHAUDHURI

Abstract

This paper shows that if countries are farsighted when deciding whether to defect from a coalition, then the implementation of cleaner technologies, as embodied by a reduction in the emission per output ratio, may either improve or jeopardize the chances of reaching an international environmental agreement. A small change in the emission per output ratio can result in a discrete jump in the stable size of a coalition and global welfare evaluated under the stable coalition size. In the case of three countries, the grand coalition may be destabilized by the implementation of cleaner technologies, ultimately resulting in higher global emissions and lower global welfare. In the case of more than three countries, implementing cleaner technologies may result in a discrete jump, either upward or downward, of the largest stable coalition size and welfare. We examine both, the case of a flow and that of a stock pollutant. In the latter case, we show that the higher the stock of pollution at the instant when the cleaner technology is implemented, the more likely that a grand coalition of three countries is destabilized. Measures that enhance the natural rate of decay of stock pollutants are shown to have similar effects on the size of stable coalitions to reductions in the emission per output ratio.

Suggested Citation

  • Hassan Benchekroun & Amrita Ray Chaudhuri, 2015. "Cleaner Technologies and the Stability of International Environmental Agreements," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 17(6), pages 887-915, December.
  • Handle: RePEc:bla:jpbect:v:17:y:2015:i:6:p:887-915
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jpet.12111
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. de Zeeuw, A.J., 2008. "Dynamic effects on the stability of international environmental agreements," Other publications TiSEM 41f27f71-d6e6-463e-9b03-f, Tilburg University, School of Economics and Management.
    2. Effrosyni Diamantoudi & Eftichios S. Sartzetakis, 2006. "Stable International Environmental Agreements: An Analytical Approach," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 8(2), pages 247-263, May.
    3. Benchekroun, H. & Ray Chaudhuri, A., 2010. "'The Voracity Effect' and Climate Change : The Impact of Clean Technologies," Discussion Paper 2010-97, Tilburg University, Center for Economic Research.
    4. de Zeeuw, Aart, 2008. "Dynamic effects on the stability of international environmental agreements," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 163-174, March.
    5. Marc Germain & Philippe Toint & Henry Tulkens & Aart Zeeuw, 2006. "Transfers to Sustain Dynamic Core-Theoretic Cooperation in International Stock Pollutant Control," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 251-274, Springer.
    6. Dockner Engelbert J. & Van Long Ngo, 1993. "International Pollution Control: Cooperative versus Noncooperative Strategies," Journal of Environmental Economics and Management, Elsevier, vol. 25(1), pages 13-29, July.
    7. Hoel, Michael & Karp, Larry, 2001. "Taxes and quotas for a stock pollutant with multiplicative uncertainty," Journal of Public Economics, Elsevier, vol. 82(1), pages 91-114, October.
    8. Karp, Larry & Simon, Leo, 2013. "Participation games and international environmental agreements: A non-parametric model," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 326-344.
    9. Michèle Breton & Lucia Sbragia & Georges Zaccour, 2010. "A Dynamic Model for International Environmental Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 25-48, January.
    10. Athanassoglou, Stergios & Xepapadeas, Anastasios, 2012. "Pollution control with uncertain stock dynamics: When, and how, to be precautious," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 304-320.
    11. Petrosjan, Leon & Zaccour, Georges, 2003. "Time-consistent Shapley value allocation of pollution cost reduction," Journal of Economic Dynamics and Control, Elsevier, vol. 27(3), pages 381-398, January.
    12. Jorgensen, Steffen & Zaccour, Georges, 2001. "Time consistent side payments in a dynamic game of downstream pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 25(12), pages 1973-1987, December.
    13. Effrosyni Diamantoudi & Eftichios S. Sartzetakis, 2018. "International Environmental Agreements—The Role of Foresight," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 241-257, September.
    14. Rubio, Santiago J. & Ulph, Alistair, 2007. "An infinite-horizon model of dynamic membership of international environmental agreements," Journal of Environmental Economics and Management, Elsevier, vol. 54(3), pages 296-310, November.
    15. Frederick Ploeg & Aart Zeeuw, 1992. "International aspects of pollution control," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(2), pages 117-139, March.
    16. Claude d'Aspremont & Alexis Jacquemin & Jean Jaskold Gabszewicz & John A. Weymark, 1983. "On the Stability of Collusive Price Leadership," Canadian Journal of Economics, Canadian Economics Association, vol. 16(1), pages 17-25, February.
    17. Prajit Dutta & Roy Radner, 2006. "Population growth and technological change in a global warming model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(2), pages 251-270, October.
    18. List, John A. & Mason, Charles F., 2001. "Optimal Institutional Arrangements for Transboundary Pollutants in a Second-Best World: Evidence from a Differential Game with Asymmetric Players," Journal of Environmental Economics and Management, Elsevier, vol. 42(3), pages 277-296, November.
    19. Benchekroun, Hassan & Ray Chaudhuri, Amrita, 2014. "Transboundary pollution and clean technologies," Resource and Energy Economics, Elsevier, vol. 36(2), pages 601-619.
    20. Michèle Breton & Michel Keoula, 2012. "Farsightedness in a Coalitional Great Fish War," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(2), pages 297-315, February.
    21. Rubio, Santiago J. & Ulph, Alistair, 2007. "An infinite-horizon model of dynamic membership of international environmental agreements," Journal of Environmental Economics and Management, Elsevier, vol. 54(3), pages 296-310, November.
    22. Dritan Osmani & Richard Tol, 2009. "Toward Farsightedly Stable International Environmental Agreements," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 11(3), pages 455-492, June.
    23. Michael Hoel & Kerstin Schneider, 1997. "Incentives to participate in an international environmental agreement," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 9(2), pages 153-170, March.
    24. Calvo, Emilio & Rubio, Santiago J., 2013. "Dynamic Models of International Environmental Agreements: A Differential Game Approach," International Review of Environmental and Resource Economics, now publishers, vol. 6(4), pages 289-339, April.
    25. Carraro, Carlo & Siniscalco, Domenico, 1993. "Strategies for the international protection of the environment," Journal of Public Economics, Elsevier, vol. 52(3), pages 309-328, October.
    26. Debraj Ray & Rajiv Vohra, 2001. "Coalitional Power and Public Goods," Journal of Political Economy, University of Chicago Press, vol. 109(6), pages 1355-1384, December.
    27. Barrett, Scott, 1994. "Self-Enforcing International Environmental Agreements," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 878-894, Supplemen.
    28. Santiago Rubio & Begoña Casino, 2005. "Self-enforcing international environmental agreements with a stock pollutant," Spanish Economic Review, Springer;Spanish Economic Association, vol. 7(2), pages 89-109, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Etienne Farvaque & Norimichi Matsueda, 2017. "International Environmental Agreement and the Timing of Domestic Lobbying," Discussion Paper Series 165, School of Economics, Kwansei Gakuin University, revised Apr 2019.
    2. Colombo, Luca & Labrecciosa, Paola & Van Long, Ngo, 2022. "A dynamic analysis of international environmental agreements under partial cooperation," European Economic Review, Elsevier, vol. 143(C).
    3. Effrosyni Diamantoudi & Eftichios S. Sartzetakis & Stefania Strantza, 2023. "Climate Coalitions and their Persistent Ineffectiveness," Discussion Paper Series 2023_04, Department of Economics, University of Macedonia, revised Apr 2023.
    4. Pim Heijnen & Lammertjan Dam, 2019. "Catastrophe and Cooperation," Dynamic Games and Applications, Springer, vol. 9(1), pages 122-141, March.
    5. Hoel, Michael & de Zeeuw, Aart, 2013. "Technology Agreements with Heterogeneous Countries," Memorandum 02/2013, Oslo University, Department of Economics.
    6. Corinne Langinier & Amrita Ray Chaudhuri, 2020. "Green Technology and Patents in the Presence of Green Consumers," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(1), pages 73-101.
    7. Toshiyuki Hirai, 2018. "Single-payoff farsighted stable sets in strategic games with dominant punishment strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1087-1111, November.
    8. de Frutos, Javier & Martín-Herrán, Guiomar, 2019. "Spatial vs. non-spatial transboundary pollution control in a class of cooperative and non-cooperative dynamic games," European Journal of Operational Research, Elsevier, vol. 276(1), pages 379-394.
    9. Langinier, Corinne & Ray Chaudhuri, Amrita, 2024. "Green Patents in an Oligopolistic Market with Green Consumers," Working Papers 2024-7, University of Alberta, Department of Economics.
    10. Karp, Larry & Sakamoto, Hiroaki, 2021. "Sober optimism and the formation of international environmental agreements," Journal of Economic Theory, Elsevier, vol. 197(C).
    11. Eftichios Sartzetakis & Stefania Strantza, 2013. "International Environmental Agreements: An Emission Choice Model with Abatement Technology," Discussion Paper Series 2013_05, Department of Economics, University of Macedonia, revised Dec 2013.
    12. Chenavaz, Régis Y. & Dimitrov, Stanko & Figge, Frank, 2021. "When does eco-efficiency rebound or backfire? An analytical model," European Journal of Operational Research, Elsevier, vol. 290(2), pages 687-700.
    13. Benchekroun, Hassan & Ray Chaudhuri, Amrita, 2014. "Transboundary pollution and clean technologies," Resource and Energy Economics, Elsevier, vol. 36(2), pages 601-619.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Battaglini & Bård Harstad, 2016. "Participation and Duration of Environmental Agreements," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 160-204.
    2. Biancardi, Marta & Villani, Giovanni, 2015. "The effects of R&D investments in international environmental agreements with asymmetric countries," Chaos, Solitons & Fractals, Elsevier, vol. 79(C), pages 30-39.
    3. Ngo Van Long, 2014. "The Green Paradox in Open Economies," CESifo Working Paper Series 4639, CESifo.
    4. Michèle Breton & Lucia Sbragia & Georges Zaccour, 2010. "A Dynamic Model for International Environmental Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 25-48, January.
    5. Kováč, Eugen & Schmidt, Robert C., 2021. "A simple dynamic climate cooperation model," Journal of Public Economics, Elsevier, vol. 194(C).
    6. repec:tiu:tiucen:200880 is not listed on IDEAS
    7. Hong, Fuhai & Karp, Larry, 2012. "International Environmental Agreements with mixed strategies and investment," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 685-697.
    8. Marrouch, W. & Ray Chaudhuri, A., 2011. "International Environmental Agreements in the Presence of Adaptation," Other publications TiSEM 247443ba-1022-47e0-9900-d, Tilburg University, School of Economics and Management.
    9. Mason, Charles F. & Polasky, Stephen & Tarui, Nori, 2017. "Cooperation on climate-change mitigation," European Economic Review, Elsevier, vol. 99(C), pages 43-55.
    10. Benchekroun, Hassan & Ray Chaudhuri, Amrita, 2011. "Environmental policy and stable collusion: The case of a dynamic polluting oligopoly," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 479-490, April.
    11. Giovanni Villani & Marta Biancardi, 2019. "An Evolutionary Game Approach in International Environmental Agreements with R&D Investments," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 1027-1042, October.
    12. Karp, Larry & Sakamoto, Hiroaki, 2021. "Sober optimism and the formation of international environmental agreements," Journal of Economic Theory, Elsevier, vol. 197(C).
    13. Karp, Larry & Simon, Leo, 2013. "Participation games and international environmental agreements: A non-parametric model," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 326-344.
    14. de Zeeuw, Aart, 2008. "Dynamic effects on the stability of international environmental agreements," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 163-174, March.
    15. Santiago J. Rubio & Alistair Ulph, 2006. "Self-enforcing international environmental agreements revisited," Oxford Economic Papers, Oxford University Press, vol. 58(2), pages 233-263, April.
    16. Lazkano, Itziar & Marrouch, Walid & Nkuiya, Bruno, 2016. "Adaptation to climate change: how does heterogeneity in adaptation costs affect climate coalitions?," Environment and Development Economics, Cambridge University Press, vol. 21(6), pages 812-838, December.
    17. Marta Biancardi & Giovanni Villani, 2011. "Largest Consistent Set in International Environmental Agreements," Computational Economics, Springer;Society for Computational Economics, vol. 38(3), pages 407-423, October.
    18. Lina Mallozzi & Stefano Patri & Armando Sacco, 2015. "Differential Game Approach for International Environmental Agreements with Social Externalities," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 9(3), pages 135-154, December.
    19. Calvo, Emilio & Rubio, Santiago J., 2013. "Dynamic Models of International Environmental Agreements: A Differential Game Approach," International Review of Environmental and Resource Economics, now publishers, vol. 6(4), pages 289-339, April.
    20. Charles Mason, 2019. "On Climate Agreements with Asymmetric Countries: Theory and Experimental Results," Working Papers 2019.22, FAERE - French Association of Environmental and Resource Economists.
    21. Colombo, Luca & Labrecciosa, Paola & Van Long, Ngo, 2022. "A dynamic analysis of international environmental agreements under partial cooperation," European Economic Review, Elsevier, vol. 143(C).

    More about this item

    JEL classification:

    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jpbect:v:17:y:2015:i:6:p:887-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/apettea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.