IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i9p4755-4765.html
   My bibliography  Save this article

Weekly greenhouse gas emissions of municipalities: Methods and comparisons

Author

Listed:
  • Monni, S.
  • Syri, S.

Abstract

Local authorities need timely information on their greenhouse gas (GHG) emissions and their causes, comparison with other municipalities and tools for dissemination of information to the citizens. This paper presents a weekly GHG emission calculation system, CO2-report, which provides such data for citizens and local decision-makers in a timely manner, in contrast to the official emissions statistics, which are available on an annual basis 1-2 years afterwards. In this paper, we present the methodology and three main outputs of CO2-report: (1) weekly GHG emissions; (2) advance annual emissions; and (3) final annual emissions for 2009 with comparison of 64 municipalities in Finland. We explain the reasons for the large variability of annual emissions, from 5 to 13Â t CO2-eq/capita, discuss the accuracy of advance and final emission estimates at local level, and show the weekly variability of emissions for three example municipalities with different emission profiles.

Suggested Citation

  • Monni, S. & Syri, S., 2011. "Weekly greenhouse gas emissions of municipalities: Methods and comparisons," Energy Policy, Elsevier, vol. 39(9), pages 4755-4765, September.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:4755-4765
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511005076
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kennedy, Christopher & Steinberger, Julia & Gasson, Barrie & Hansen, Yvonne & Hillman, Timothy & Havránek, Miroslav & Pataki, Diane & Phdungsilp, Aumnad & Ramaswami, Anu & Mendez, Gara Villalba, 2010. "Methodology for inventorying greenhouse gas emissions from global cities," Energy Policy, Elsevier, vol. 38(9), pages 4828-4837, September.
    2. Dhakal, Shobhakar & Shrestha, Ram M., 2010. "Bridging the research gaps for carbon emissions and their management in cities," Energy Policy, Elsevier, vol. 38(9), pages 4753-4755, September.
    3. Graus, Wina & Worrell, Ernst, 2011. "Methods for calculating CO2 intensity of power generation and consumption: A global perspective," Energy Policy, Elsevier, vol. 39(2), pages 613-627, February.
    4. Sovacool, Benjamin K. & Brown, Marilyn A., 2010. "Twelve metropolitan carbon footprints: A preliminary comparative global assessment," Energy Policy, Elsevier, vol. 38(9), pages 4856-4869, September.
    5. Zephyr, 2010. "The city," City, Taylor & Francis Journals, vol. 14(1-2), pages 154-155, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pablo-Romero, María del P. & Pozo-Barajas, Rafael & Sánchez-Braza, Antonio, 2015. "Understanding local CO2 emissions reduction targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 347-355.
    2. Christoforidis, Georgios C. & Chatzisavvas, Konstantinos Ch. & Lazarou, Stavros & Parisses, Costantinos, 2013. "Covenant of Mayors initiative—Public perception issues and barriers in Greece," Energy Policy, Elsevier, vol. 60(C), pages 643-655.
    3. Asdrubali, F. & Presciutti, A. & Scrucca, F., 2013. "Development of a greenhouse gas accounting GIS-based tool to support local policy making—application to an Italian municipality," Energy Policy, Elsevier, vol. 61(C), pages 587-594.
    4. Li, Liming & Chen, Weidong, 2021. "The impact of subsidies in a transboundary pollution game with myopic players," Omega, Elsevier, vol. 103(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kramers, Anna & Wangel, Josefin & Johansson, Stefan & Höjer, Mattias & Finnveden, Göran & Brandt, Nils, 2013. "Towards a comprehensive system of methodological considerations for cities' climate targets," Energy Policy, Elsevier, vol. 62(C), pages 1276-1287.
    2. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    3. Kennedy, Christopher & Demoullin, Stéphanie & Mohareb, Eugene, 2012. "Cities reducing their greenhouse gas emissions," Energy Policy, Elsevier, vol. 49(C), pages 774-777.
    4. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    5. Liu, Zhu & Liang, Sai & Geng, Yong & Xue, Bing & Xi, Fengming & Pan, Ying & Zhang, Tianzhu & Fujita, Tsuyoshi, 2012. "Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing," Energy, Elsevier, vol. 37(1), pages 245-254.
    6. Pasimeni, Maria Rita & Petrosillo, Irene & Aretano, Roberta & Semeraro, Teodoro & De Marco, Antonella & Zaccarelli, Nicola & Zurlini, Giovanni, 2014. "Scales, strategies and actions for effective energy planning: A review," Energy Policy, Elsevier, vol. 65(C), pages 165-174.
    7. Ramachandra, T.V. & Aithal, Bharath H. & Sreejith, K., 2015. "GHG footprint of major cities in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 473-495.
    8. Li, J.S. & Chen, G.Q. & Lai, T.M. & Ahmad, B. & Chen, Z.M. & Shao, L. & Ji, Xi, 2013. "Embodied greenhouse gas emission by Macao," Energy Policy, Elsevier, vol. 59(C), pages 819-833.
    9. Facchini, Angelo & Kennedy, Chris & Stewart, Iain & Mele, Renata, 2017. "The energy metabolism of megacities," Applied Energy, Elsevier, vol. 186(P2), pages 86-95.
    10. Bi, Jun & Zhang, Rongrong & Wang, Haikun & Liu, Miaomiao & Wu, Yi, 2011. "The benchmarks of carbon emissions and policy implications for China's cities: Case of Nanjing," Energy Policy, Elsevier, vol. 39(9), pages 4785-4794, September.
    11. Chen, Shaoqing & Long, Huihui & Chen, Bin & Feng, Kuishuang & Hubacek, Klaus, 2020. "Urban carbon footprints across scale: Important considerations for choosing system boundaries," Applied Energy, Elsevier, vol. 259(C).
    12. Ramachandra, T.V. & Bajpai, Vishnu & Kulkarni, Gouri & Aithal, Bharath H. & Han, Sun Sheng, 2017. "Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1331-1344.
    13. Wang, Hongsheng & Lei, Yue & Wang, Haikun & Liu, Miaomiao & Yang, Jie & Bi, Jun, 2013. "Carbon reduction potentials of China's industrial parks: A case study of Suzhou Industry Park," Energy, Elsevier, vol. 55(C), pages 668-675.
    14. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    15. Hoffmann, Magnus & Kolmar, Martin, 2017. "Distributional preferences in probabilistic and share contests," Journal of Economic Behavior & Organization, Elsevier, vol. 142(C), pages 120-139.
    16. Scheffknecht, Lukas & Geiger, Felix, 2011. "A behavioral macroeconomic model with endogenous boom-bust cycles and leverage dynamcis," FZID Discussion Papers 37-2011, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    17. Jingyi Liu & Feng Gui & Qian Zhou & Huiwen Cai & Kaida Xu & Sheng Zhao, 2023. "Carbon Footprint of a Large Yellow Croaker Mariculture Models Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    18. Su, Yongxian & Chen, Xiuzhi & Li, Yong & Liao, Jishan & Ye, Yuyao & Zhang, Hongou & Huang, Ningsheng & Kuang, Yaoqiu, 2014. "China׳s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 231-243.
    19. Aurélie LALANNE & Guillaume POUYANNE, 2012. "Ten years of metropolization in economics: a bibliometric approach (In French)," Cahiers du GREThA (2007-2019) 2012-11, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    20. Jukka Heinonen & Antti-Juhani Säynäjoki & Matti Kuronen & Seppo Junnila, 2012. "Are the Greenhouse Gas Implications of New Residential Developments Understood Wrongly?," Energies, MDPI, vol. 5(8), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:4755-4765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.