IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v23y2023i1d10.1007_s12351-023-00754-0.html
   My bibliography  Save this article

Single machine scheduling problems involving job-dependent step-deterioration dates and job rejection

Author

Listed:
  • Baruch Mor

    (Ariel University)

Abstract

This research focuses on scheduling problems with step-deteriorating job processing times. This phenomenon reflects various real-life settings where the processing time of the jobs, processed after their pre-determined and job-dependent deterioration date, is defined by a step function. A single machine setting is assumed, and optional job rejection is considered. The scheduling measure focused on in this study is makespan, and three variants of the basic problem are considered: (i) minimizing the sum of the scheduling measure and total rejection cost; (ii) minimizing the scheduling criterion, given an upper bound on the total rejection cost; and (iii) minimizing the total rejection cost, subject to a constraint on the scheduling measure. As minimizing the makespan on a single machine with step deterioration is known to be ordinary NP-hard, even if all jobs share a common deterioration date, all presented problems are NP-hard. For all problems, pseudo-polynomial time dynamic-programming (DP) algorithms are presented, establishing that they remain ordinary NP-hard. Furthermore, an extensive experimental study was conducted to determine the efficiency of the proposed algorithms.

Suggested Citation

  • Baruch Mor, 2023. "Single machine scheduling problems involving job-dependent step-deterioration dates and job rejection," Operational Research, Springer, vol. 23(1), pages 1-19, March.
  • Handle: RePEc:spr:operea:v:23:y:2023:i:1:d:10.1007_s12351-023-00754-0
    DOI: 10.1007/s12351-023-00754-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-023-00754-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-023-00754-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baruch Mor & Dana Shapira, 2019. "Improved algorithms for scheduling on proportionate flowshop with job-rejection," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(11), pages 1997-2003, November.
    2. Baruch Mor & Gur Mosheiov & Dvir Shabtay, 2021. "Minimizing the total tardiness and job rejection cost in a proportionate flow shop with generalized due dates," Journal of Scheduling, Springer, vol. 24(6), pages 553-567, December.
    3. Cheng, T. C. E. & Ding, Q., 2001. "Single machine scheduling with step-deteriorating processing times," European Journal of Operational Research, Elsevier, vol. 134(3), pages 623-630, November.
    4. Baoyu Liao & Qingru Song & Jun Pei & Shanlin Yang & Panos M. Pardalos, 2020. "Parallel-machine group scheduling with inclusive processing set restrictions, outsourcing option and serial-batching under the effect of step-deterioration," Journal of Global Optimization, Springer, vol. 78(4), pages 717-742, December.
    5. Baruch Mor & Gur Mosheiov, 2016. "Minimizing maximum cost on a single machine with two competing agents and job rejection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1524-1531, December.
    6. Vitaly A. Strusevich & Kabir Rustogi, 2017. "Scheduling with Time-Changing Effects and Rate-Modifying Activities," International Series in Operations Research and Management Science, Springer, number 978-3-319-39574-6, December.
    7. Xueling Zhong & Jinwen Ou, 2017. "Improved approximation algorithms for parallel machine scheduling with release dates and job rejection," 4OR, Springer, vol. 15(4), pages 387-406, December.
    8. Lalla-Ruiz, Eduardo & Voß, Stefan, 2016. "Modeling the Parallel Machine Scheduling Problem with Step Deteriorating Jobs," European Journal of Operational Research, Elsevier, vol. 255(1), pages 21-33.
    9. Shi-Sheng Li & De-Liang Qian & Ren-Xia Chen, 2017. "Proportionate Flow Shop Scheduling with Rejection," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-13, August.
    10. Baruch Mor & Gur Mosheiov, 2022. "Single machine scheduling to maximize the weighted number of on-time jobs with job-rejection," Operational Research, Springer, vol. 22(3), pages 2707-2719, July.
    11. Baruch Mor & Gur Mosheiov, 2012. "Batch scheduling with step‐deteriorating processing times to minimize flowtime," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(8), pages 587-600, December.
    12. Vitaly A. Strusevich & Kabir Rustogi, 2017. "Scheduling with Rate-Modifying Activities," International Series in Operations Research & Management Science, in: Scheduling with Time-Changing Effects and Rate-Modifying Activities, chapter 0, pages 317-331, Springer.
    13. Oron, Daniel, 2021. "Two-agent scheduling problems under rejection budget constraints," Omega, Elsevier, vol. 102(C).
    14. Du-Juan Wang & Yunqiang Yin & Mengqi Liu, 2016. "Bicriteria scheduling problems involving job rejection, controllable processing times and rate-modifying activity," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3691-3705, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. K. Sivashankari & R. Valarmathi, 2023. "Optimal pricing and production lot-size policies in imperfect production system with price-sensitive demand, reworking, scrap, and sales return," Operational Research, Springer, vol. 23(3), pages 1-28, September.
    2. Bing Bai & Cai-Min Wei & Hong-Yu He & Ji-Bo Wang, 2024. "Study on Single-Machine Common/Slack Due-Window Assignment Scheduling with Delivery Times, Variable Processing Times and Outsourcing," Mathematics, MDPI, vol. 12(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delorme, Maxence & Iori, Manuel & Mendes, Nilson F.M., 2021. "Solution methods for scheduling problems with sequence-dependent deterioration and maintenance events," European Journal of Operational Research, Elsevier, vol. 295(3), pages 823-837.
    2. Baruch Mor & Gur Mosheiov, 2021. "A note: flowshop scheduling with linear deterioration and job-rejection," 4OR, Springer, vol. 19(1), pages 103-111, March.
    3. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    4. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    5. Gur Mosheiov & Daniel Oron, 2020. "Scheduling problems with a weight-modifying-activity," Annals of Operations Research, Springer, vol. 295(2), pages 737-745, December.
    6. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    7. Baruch Mor & Dana Shapira, 2022. "Single machine scheduling with non-availability interval and optional job rejection," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 480-497, August.
    8. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    9. Zhongyi Jiang & Fangfang Chen & Xiandong Zhang, 2022. "Single-machine scheduling problems with general truncated sum-of-actual-processing-time-based learning effect," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 116-139, January.
    10. Alan J. Soper & Vitaly A. Strusevich, 2020. "Refined conditions for V-shaped optimal sequencing on a single machine to minimize total completion time under combined effects," Journal of Scheduling, Springer, vol. 23(6), pages 665-680, December.
    11. Stanisław Gawiejnowicz & Wiesław Kurc, 2020. "New results for an open time-dependent scheduling problem," Journal of Scheduling, Springer, vol. 23(6), pages 733-744, December.
    12. Zong-Jun Wei & Li-Yan Wang & Lei Zhang & Ji-Bo Wang & Ershen Wang, 2023. "Single-Machine Maintenance Activity Scheduling with Convex Resource Constraints and Learning Effects," Mathematics, MDPI, vol. 11(16), pages 1-21, August.
    13. Baruch Mor & Gur Mosheiov, 2018. "A note: minimizing total absolute deviation of job completion times on unrelated machines with general position-dependent processing times and job-rejection," Annals of Operations Research, Springer, vol. 271(2), pages 1079-1085, December.
    14. Wenhua Li & Libo Wang & Xing Chai & Hang Yuan, 2020. "Online Batch Scheduling of Simple Linear Deteriorating Jobs with Incompatible Families," Mathematics, MDPI, vol. 8(2), pages 1-12, February.
    15. Bartłomiej Przybylski, 2022. "Parallel-machine scheduling of jobs with mixed job-, machine- and position-dependent processing times," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 207-222, August.
    16. Helmut A. Sedding, 2020. "Scheduling jobs with a V-shaped time-dependent processing time," Journal of Scheduling, Springer, vol. 23(6), pages 751-768, December.
    17. Mohamadreza Dabiri & Mehdi Yazdani & Bahman Naderi & Hassan Haleh, 2022. "Modeling and solution methods for hybrid flow shop scheduling problem with job rejection," Operational Research, Springer, vol. 22(3), pages 2721-2765, July.
    18. Shi-Sheng Li & Ren-Xia Chen & Qi Feng & Cheng-Wen Jiao, 2019. "Parallel-machine scheduling with job-dependent cumulative deterioration effect and rejection," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 957-971, October.
    19. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
    20. C-C He & C-C Wu & W-C Lee, 2009. "Branch-and-bound and weight-combination search algorithms for the total completion time problem with step-deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1759-1766, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:23:y:2023:i:1:d:10.1007_s12351-023-00754-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.