IDEAS home Printed from https://ideas.repec.org/a/eee/joecas/v24y2021ics1703494921000372.html
   My bibliography  Save this article

Stock market volatility on shipping stock prices: GARCH models approach

Author

Listed:
  • Mhd Ruslan, Siti Marsila
  • Mokhtar, Kasypi

Abstract

One of the most vital commodities is oil and its impact on the global economy is substantial through numerous studies. This paper aims at examining the stock returns of three main global shipping companies in three countries that are based in Germany (Hapag-Lloyd), South Korea (Hyundai) and Taiwan (Yang Ming). The goal of this study is to look into the oil price and shipping stock prices using a range of univariate GARCH models by using daily data from 2017 to 2020. Methodologically, this study employs symmetric and asymmetric GARCH models. Based on the outcome, it shows that the volatility shocks are quite persistent, with coefficients’ volatility exhibits clustering to set up future positions in anticipation of the advance in the stock market. The findings of EGARCH model show the leverage effect and the shock impact are asymmetric with positive shocks have a stronger influence on the volatility of the following period than the same negative magnitudes of shocks. Nonetheless, the GJR-GARCH model presents a rather mixed outcome with Yang Ming exhibits no asymmetric effect on the volatility, while Hyundai and HLAG show that negative shocks led towards volatility. In sum, the finding of this study is important since it would provide a realistic view for regulators and investors in anticipating the market sentiment in shipping market with respect to the global oil prices.

Suggested Citation

  • Mhd Ruslan, Siti Marsila & Mokhtar, Kasypi, 2021. "Stock market volatility on shipping stock prices: GARCH models approach," The Journal of Economic Asymmetries, Elsevier, vol. 24(C).
  • Handle: RePEc:eee:joecas:v:24:y:2021:i:c:s1703494921000372
    DOI: 10.1016/j.jeca.2021.e00232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1703494921000372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeca.2021.e00232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2014. "Dynamic Spillovers of Oil Price Shocks and Policy Uncertainty," Department of Economics Working Paper Series 166, WU Vienna University of Economics and Business.
    2. Boyer, M. Martin & Filion, Didier, 2007. "Common and fundamental factors in stock returns of Canadian oil and gas companies," Energy Economics, Elsevier, vol. 29(3), pages 428-453, May.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Atukeren, Erdal & Çevik, Emrah İsmail & Korkmaz, Turhan, 2021. "Volatility spillovers between WTI and Brent spot crude oil prices: an analysis of granger causality in variance patterns over time," Research in International Business and Finance, Elsevier, vol. 56(C).
    5. Wolfgang Drobetz & Dirk Schilling & Lars Tegtmeier, 2010. "Common risk factors in the returns of shipping stocks," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(2), pages 93-120, March.
    6. Enders, Walter & Siklos, Pierre L, 2001. "Cointegration and Threshold Adjustment," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 166-176, April.
    7. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    8. Xiaolin Sun & Hailong Liu & Shiyuan Zheng & Shun Chen, 2018. "Combination hedging strategies for crude oil and dry bulk freight rates on the impacts of dynamic cross-market interaction," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(2), pages 174-196, February.
    9. Gogolin, Fabian & Kearney, Fearghal, 2016. "Does speculation impact what factors determine oil futures prices?," Economics Letters, Elsevier, vol. 144(C), pages 119-122.
    10. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
    11. Khalfaoui, Rabeh & Padhan, Hemachandra & Tiwari, Aviral Kumar & Hammoudeh, Shawkat, 2020. "Understanding the time-frequency dynamics of money demand, oil prices and macroeconomic variables: The case of India," Resources Policy, Elsevier, vol. 68(C).
    12. Amir H. Alizadeh & Nikos K. Nomikos, 2006. "Trading strategies in the market for tankers," Maritime Policy & Management, Taylor & Francis Journals, vol. 33(2), pages 119-140, May.
    13. Evgenidis, Anastasios & Tsagkanos, Athanasios & Siriopoulos, Costas, 2017. "Towards an asymmetric long run equilibrium between stock market uncertainty and the yield spread. A threshold vector error correction approach," Research in International Business and Finance, Elsevier, vol. 39(PA), pages 267-279.
    14. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Estimating yield spreads volatility using GARCH-type models," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    15. Dees, Stephane & Karadeloglou, Pavlos & Kaufmann, Robert K. & Sanchez, Marcelo, 2007. "Modelling the world oil market: Assessment of a quarterly econometric model," Energy Policy, Elsevier, vol. 35(1), pages 178-191, January.
    16. Alizadeh, Amir H. & Kappou, Konstantina & Tsouknidis, Dimitris & Visvikis, Ilias, 2015. "Liquidity effects and FFA returns in the international shipping derivatives market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 58-75.
    17. Granger, C W J & Lee, T H, 1989. "Investigation of Production, Sales and Inventory Relationships Using Multicointegration and Non-symmetric Error Correction Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(S), pages 145-159, Supplemen.
    18. Lin, Boqiang & Bai, Rui, 2021. "Oil prices and economic policy uncertainty: Evidence from global, oil importers, and exporters’ perspective," Research in International Business and Finance, Elsevier, vol. 56(C).
    19. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    20. Ehouman, Yao Axel, 2020. "Volatility transmission between oil prices and banks' stock prices as a new source of instability: Lessons from the United States experience," Economic Modelling, Elsevier, vol. 91(C), pages 198-217.
    21. Maitra, Debasish & Chandra, Saurabh & Dash, Saumya Ranjan, 2020. "Liner shipping industry and oil price volatility: Dynamic connectedness and portfolio diversification," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    22. Alizadeh, Amir H., 2013. "Trading volume and volatility in the shipping forward freight market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 250-265.
    23. Alexandridis, George & Kavussanos, Manolis G. & Kim, Chi Y. & Tsouknidis, Dimitris A. & Visvikis, Ilias D., 2018. "A survey of shipping finance research: Setting the future research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 164-212.
    24. Corbet, Shaen & Goodell, John W. & Günay, Samet, 2020. "Co-movements and spillovers of oil and renewable firms under extreme conditions: New evidence from negative WTI prices during COVID-19," Energy Economics, Elsevier, vol. 92(C).
    25. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    26. Alexandridis, G. & Sahoo, S. & Visvikis, I., 2017. "Economic information transmissions and liquidity between shipping markets: New evidence from freight derivatives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 82-104.
    27. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    28. Lu Jing & Peter B. Marlow & Wang Hui, 2008. "An analysis of freight rate volatility in dry bulk shipping markets," Maritime Policy & Management, Taylor & Francis Journals, vol. 35(3), pages 237-251, June.
    29. Aliyev, Fuzuli & Ajayi, Richard & Gasim, Nijat, 2020. "Modelling asymmetric market volatility with univariate GARCH models: Evidence from Nasdaq-100," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    30. Batchelor, Roy & Alizadeh, Amir & Visvikis, Ilias, 2007. "Forecasting spot and forward prices in the international freight market," International Journal of Forecasting, Elsevier, vol. 23(1), pages 101-114.
    31. Yao Axel Ehouman, 2020. "Volatility transmission between oil prices and banks’ stock prices as a new source of instability: Lessons from the United States experience," Post-Print hal-02960571, HAL.
    32. Nonejad, Nima, 2021. "The price of crude oil and (conditional) out-of-sample predictability of world industrial production," Journal of Commodity Markets, Elsevier, vol. 23(C).
    33. Andriosopoulos, Kostas & Doumpos, Michael & Papapostolou, Nikos C. & Pouliasis, Panos K., 2013. "Portfolio optimization and index tracking for the shipping stock and freight markets using evolutionary algorithms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 52(C), pages 16-34.
    34. Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian & Shahzad, Syed Jawad Hussain, 2020. "The predictive power of oil price shocks on realized volatility of oil: A note," Resources Policy, Elsevier, vol. 69(C).
    35. Ewing, Bradley T. & Malik, Farooq, 2013. "Volatility transmission between gold and oil futures under structural breaks," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 113-121.
    36. Kim, Myung Suk, 2018. "Impacts of supply and demand factors on declining oil prices," Energy, Elsevier, vol. 155(C), pages 1059-1065.
    37. Luciana Juvenal & Ivan Petrella, 2015. "Speculation in the Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 621-649, June.
    38. Bams, Dennis & Blanchard, Gildas & Honarvar, Iman & Lehnert, Thorsten, 2017. "Does oil and gold price uncertainty matter for the stock market?," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 270-285.
    39. Zhu, Zhaobo & Ji, Qiang & Sun, Licheng & Zhai, Pengxiang, 2020. "Oil price shocks, investor sentiment, and asset pricing anomalies in the oil and gas industry," International Review of Financial Analysis, Elsevier, vol. 70(C).
    40. Engle, Robert F. & White (the late), Halbert (ed.), 1999. "Cointegration, Causality, and Forecasting: Festschrift in Honour of Clive W. J. Granger," OUP Catalogue, Oxford University Press, number 9780198296836.
    41. Lian, Ziying & Cai, Jun & Webb, Robert I., 2020. "Oil stocks, risk factors, and tail behavior," Energy Economics, Elsevier, vol. 91(C).
    42. Gong, Xu & Chen, Liqiang & Lin, Boqiang, 2020. "Analyzing dynamic impacts of different oil shocks on oil price," Energy, Elsevier, vol. 198(C).
    43. Eric Zivot, 2008. "Practical Issues in the Analysis of Univariate GARCH Models," Working Papers UWEC-2008-03-FC, University of Washington, Department of Economics.
    44. Wu, Chih-Chiang & Chung, Huimin & Chang, Yu-Hsien, 2012. "The economic value of co-movement between oil price and exchange rate using copula-based GARCH models," Energy Economics, Elsevier, vol. 34(1), pages 270-282.
    45. Thorbecke, Willem, 2019. "Oil prices and the U.S. economy: Evidence from the stock market," Journal of Macroeconomics, Elsevier, vol. 61(C), pages 1-1.
    46. Huang, Wen-Hsiu & Chao, Ming-Che, 2012. "The effects of oil prices on the price indices in Taiwan: International or domestic oil prices matter?," Energy Policy, Elsevier, vol. 45(C), pages 730-738.
    47. John Robertson & University of Dundee, Dundee, UK, 2020. "Volatility Transmission between Oil Prices and Stock Prices as a New Source of Instability: Lessons from the UK Experience," Asian Journal of Economics and Empirical Research, Asian Online Journal Publishing Group, vol. 7(2), pages 217-223.
    48. Chen, Jinyu & Zhu, Xuehong & Li, Hailing, 2020. "The pass-through effects of oil price shocks on China's inflation: A time-varying analysis," Energy Economics, Elsevier, vol. 86(C).
    49. Xiaoyi Mu & Haichun Ye, 2011. "Understanding the Crude Oil Price: How Important Is the China Factor?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 69-92.
    50. Chris Brooks & Simon Burke, 2003. "Information criteria for GARCH model selection," The European Journal of Finance, Taylor & Francis Journals, vol. 9(6), pages 557-580.
    51. Tsouknidis, Dimitris A., 2016. "Dynamic volatility spillovers across shipping freight markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 90-111.
    52. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
    53. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2014. "Dynamic spillovers of oil price shocks and economic policy uncertainty," Energy Economics, Elsevier, vol. 44(C), pages 433-447.
    54. Tsagkanos, Athanasios & Siriopoulos, Costas, 2015. "Stock markets and industrial production in north and south of Euro-zone: Asymmetric effects via threshold cointegration approach," The Journal of Economic Asymmetries, Elsevier, vol. 12(2), pages 162-172.
    55. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Chuanwang & Min, Jialin & Sun, Jiacheng & Gong, Xu, 2023. "The role of China's crude oil futures in world oil futures market and China's financial market," Energy Economics, Elsevier, vol. 120(C).
    2. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Azoury, Nehme & Uddin, Gazi Salah, 2024. "Does oil price volatility matter for the US transportation industry?," Energy, Elsevier, vol. 290(C).
    3. Boqiang Lin & Tianxu Lan, 2024. "The time‐varying volatility spillover effects between China's coal and metal market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(5), pages 699-719, May.
    4. Zhao, Dong & Sibt e-Ali, Muhammad & Omer Chaudhry, Muhammad & Ayub, Bakhtawer & Waqas, Muhammad & Ullah, Irfan, 2024. "Modeling the Nexus between geopolitical risk, oil price volatility and renewable energy investment; evidence from Chinese listed firms," Renewable Energy, Elsevier, vol. 225(C).
    5. Hleil Alrweili & Ousama Ben-Salha, 2024. "Dynamic Asymmetric Volatility Spillover and Connectedness Network Analysis among Sectoral Renewable Energy Stocks," Mathematics, MDPI, vol. 12(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    2. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    3. Pouliasis, Panos K. & Papapostolou, Nikos C. & Kyriakou, Ioannis & Visvikis, Ilias D., 2018. "Shipping equity risk behavior and portfolio management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 178-200.
    4. Alexandridis, George & Kavussanos, Manolis G. & Kim, Chi Y. & Tsouknidis, Dimitris A. & Visvikis, Ilias D., 2018. "A survey of shipping finance research: Setting the future research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 164-212.
    5. Sun, Xiaolin & Haralambides, Hercules & Liu, Hailong, 2019. "Dynamic spillover effects among derivative markets in tanker shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 384-409.
    6. Wolfgang Drobetz & Tim Richter & Martin Wambach, 2012. "Dynamics of time-varying volatility in the dry bulk and tanker freight markets," Applied Financial Economics, Taylor & Francis Journals, vol. 22(16), pages 1367-1384, August.
    7. Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
    8. Maitra, Debasish & Chandra, Saurabh & Dash, Saumya Ranjan, 2020. "Liner shipping industry and oil price volatility: Dynamic connectedness and portfolio diversification," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    9. Olusanya E. Olubusoye & OlaOluwa S. Yaya, 2016. "Time series analysis of volatility in the petroleum pricing markets: the persistence, asymmetry and jumps in the returns series," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 40(3), pages 235-262, September.
    10. B M, Lithin & chakraborty, Suman & iyer, Vishwanathan & M N, Nikhil & ledwani, Sanket, 2022. "Modeling asymmetric sovereign bond yield volatility with univariate GARCH models: Evidence from India," MPRA Paper 117067, University Library of Munich, Germany, revised 05 Jan 2023.
    11. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
    12. Shadi Tehrani & Jesús Juan & Eduardo Caro, 2022. "Electricity Spot Price Modeling and Forecasting in European Markets," Energies, MDPI, vol. 15(16), pages 1-23, August.
    13. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, January.
    14. Muhammad Sheraz & Imran Nasir, 2021. "Information-Theoretic Measures and Modeling Stock Market Volatility: A Comparative Approach," Risks, MDPI, vol. 9(5), pages 1-20, May.
    15. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    16. Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
    17. Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
    18. Rachna Mahalwala, 2022. "Analysing exchange rate volatility in India using GARCH family models," SN Business & Economics, Springer, vol. 2(9), pages 1-16, September.
    19. Díaz-Hernández, Adán & Constantinou, Nick, 2019. "A multiple regime extension to the Heston–Nandi GARCH(1,1) model," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 162-180.
    20. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.

    More about this item

    Keywords

    Oil price; Stock prices; GARCH; WTI; Brent;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:joecas:v:24:y:2021:i:c:s1703494921000372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/the-journal-of-economic-asymmetries/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.