IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2021i5p89-d550572.html
   My bibliography  Save this article

Information-Theoretic Measures and Modeling Stock Market Volatility: A Comparative Approach

Author

Listed:
  • Muhammad Sheraz

    (Department of Mathematical Sciences, Institute of Business Administration, The School of Mathematics and Computer Science, Karachi 75270, Pakistan)

  • Imran Nasir

    (Department of Mathematical Sciences, Institute of Business Administration, The School of Mathematics and Computer Science, Karachi 75270, Pakistan)

Abstract

The volatility analysis of stock returns data is paramount in financial studies. We investigate the dynamics of volatility and randomness of the Pakistan Stock Exchange (PSX-100) and obtain insights into the behavior of investors during and before the coronavirus disease (COVID-19 pandemic). The paper aims to present the volatility estimations and quantification of the randomness of PSX-100. The methodology includes two approaches: (i) the implementation of EGARCH, GJR-GARCH, and TGARCH models to estimate the volatilities; and (ii) analysis of randomness in volatilities series, return series, and PSX-100 closing prices for pre-pandemic and pandemic period by using Shannon’s, Tsallis, approximate and sample entropies. Volatility modeling suggests the existence of the leverage effect in both the underlying periods of study. The results obtained using GARCH modeling reveal that the stock market volatility has increased during the pandemic period. However, information-theoretic results based on Shannon and Tsallis entropies do not suggest notable variation in the estimated volatilities series and closing prices. We have examined regularity and randomness based on the approximate entropy and sample entropy. We have noticed both entropies are extremely sensitive to choices of the parameters.

Suggested Citation

  • Muhammad Sheraz & Imran Nasir, 2021. "Information-Theoretic Measures and Modeling Stock Market Volatility: A Comparative Approach," Risks, MDPI, vol. 9(5), pages 1-20, May.
  • Handle: RePEc:gam:jrisks:v:9:y:2021:i:5:p:89-:d:550572
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/5/89/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/5/89/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. David McMillan & Alan Speight & Owain Apgwilym, 2000. "Forecasting UK stock market volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 10(4), pages 435-448.
    3. Topcu, Mert & Gulal, Omer Serkan, 2020. "The impact of COVID-19 on emerging stock markets," Finance Research Letters, Elsevier, vol. 36(C).
    4. Xu, Libo, 2021. "Stock Return and the COVID-19 pandemic: Evidence from Canada and the US," Finance Research Letters, Elsevier, vol. 38(C).
    5. Taylor, James W., 2004. "Volatility forecasting with smooth transition exponential smoothing," International Journal of Forecasting, Elsevier, vol. 20(2), pages 273-286.
    6. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    7. Ng, Hock Guan & McAleer, Michael, 2004. "Recursive modelling of symmetric and asymmetric volatility in the presence of extreme observations," International Journal of Forecasting, Elsevier, vol. 20(1), pages 115-129.
    8. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    9. Marcus Alexander Ong, 2015. "An information theoretic analysis of stock returns, volatility and trading volumes," Applied Economics, Taylor & Francis Journals, vol. 47(36), pages 3891-3906, August.
    10. Fan, Ying & Zhang, Yue-Jun & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Estimating 'Value at Risk' of crude oil price and its spillover effect using the GED-GARCH approach," Energy Economics, Elsevier, vol. 30(6), pages 3156-3171, November.
    11. T. Clifton Green & Stephen Figlewski, 1999. "Market Risk and Model Risk for a Financial Institution Writing Options," Journal of Finance, American Finance Association, vol. 54(4), pages 1465-1499, August.
    12. James W. Taylor, 2004. "Smooth transition exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 385-404.
    13. Gradojevic, Nikola & Gencay, Ramazan, 2008. "Overnight interest rates and aggregate market expectations," Economics Letters, Elsevier, vol. 100(1), pages 27-30, July.
    14. Les Gulko, 1999. "The Entropy Theory Of Stock Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 331-355.
    15. Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
    16. Kentaka Aruga, 2021. "Changes in Human Mobility under the COVID-19 Pandemic and the Tokyo Fuel Market," JRFM, MDPI, vol. 14(4), pages 1-12, April.
    17. Barry Harrison & Winston Moore, 2012. "Forecasting Stock Market Volatility in Central and Eastern European Countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(6), pages 490-503, September.
    18. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    19. Zhifeng Liu & Toan Luu Duc Huynh & Peng-Fei Dai, 2020. "The impact of COVID-19 on the stock market crash risk in China," Papers 2009.08030, arXiv.org, revised Aug 2021.
    20. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    21. Szczygielski, Jan Jakub & Bwanya, Princess Rutendo & Charteris, Ailie & Brzeszczyński, Janusz, 2021. "The only certainty is uncertainty: An analysis of the impact of COVID-19 uncertainty on regional stock markets," Finance Research Letters, Elsevier, vol. 43(C).
    22. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    23. Tapiero, Oren J., 2013. "The relationship between risk and incomplete states uncertainty: a Tsallis entropy perspective," Algorithmic Finance, IOS Press, vol. 2(2), pages 141-150.
    24. Okičić Jasmina, 2015. "An Empirical Analysis Of Stock Returns And Volatility: The Case Of Stock Markets From Central And Eastern Europe," South East European Journal of Economics and Business, Sciendo, vol. 9(1), pages 7-15, April.
    25. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    26. Cao, C Q & Tsay, R S, 1992. "Nonlinear Time-Series Analysis of Stock Volatilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 165-185, Suppl. De.
    27. Rizwan Ali & Inayat Ullah Mangla & Ramiz Ur Rehman & Wuzhao Xue & Muhammad Akram Naseem & Muhammad Ishfaq Ahmad, 2020. "Exchange Rate, Gold Price, and Stock Market Nexus: A Quantile Regression Approach," Risks, MDPI, vol. 8(3), pages 1-16, August.
    28. Engle, Robert F. & White (the late), Halbert (ed.), 1999. "Cointegration, Causality, and Forecasting: Festschrift in Honour of Clive W. J. Granger," OUP Catalogue, Oxford University Press, number 9780198296836.
    29. Chkili, Walid & Aloui, Chaker & Nguyen, Duc Khuong, 2012. "Asymmetric effects and long memory in dynamic volatility relationships between stock returns and exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 738-757.
    30. Steve Pincus, 2008. "Approximate Entropy as an Irregularity Measure for Financial Data," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 329-362.
    31. Taylor, Stephen J., 1987. "Forecasting the volatility of currency exchange rates," International Journal of Forecasting, Elsevier, vol. 3(1), pages 159-170.
    32. Grzegorz Zimon & Hossein Tarighi, 2021. "Effects of the COVID-19 Global Crisis on the Working Capital Management Policy: Evidence from Poland," JRFM, MDPI, vol. 14(4), pages 1-17, April.
    33. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    34. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
    35. Mabrouk, Samir & Saadi, Samir, 2012. "Parametric Value-at-Risk analysis: Evidence from stock indices," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(3), pages 305-321.
    36. Liu, Zhifeng & Huynh, Toan Luu Duc & Dai, Peng-Fei, 2021. "The impact of COVID-19 on the stock market crash risk in China," Research in International Business and Finance, Elsevier, vol. 57(C).
    37. Preda, Vasile & Dedu, Silvia & Sheraz, Muhammad, 2014. "New measure selection for Hunt–Devolder semi-Markov regime switching interest rate models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 350-359.
    38. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandra Ferreruela & Daniel Martín, 2022. "Market Quality and Short-Selling Ban during the COVID-19 Pandemic: A High-Frequency Data Approach," JRFM, MDPI, vol. 15(7), pages 1-29, July.
    2. Paul R. Dewick, 2022. "On Financial Distributions Modelling Methods: Application on Regression Models for Time Series," JRFM, MDPI, vol. 15(10), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    2. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    3. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, January.
    4. Debabrata Mukhopadhyay & Nityananda Sarkar, 2013. "Stock Returns Under Alternative Volatility and Distributional Assumptions: The Case for India," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 1-19, April.
    5. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    6. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Wilson Ye Chen & Richard H. Gerlach, 2017. "Semiparametric GARCH via Bayesian model averaging," Papers 1708.07587, arXiv.org.
    8. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
    9. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Samet Gunay & Audil Rashid Khaki, 2018. "Best Fitting Fat Tail Distribution for the Volatilities of Energy Futures: Gev, Gat and Stable Distributions in GARCH and APARCH Models," JRFM, MDPI, vol. 11(2), pages 1-19, June.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    13. Milton Abdul Thorlie & Lixin Song & Muhammad Amin & Xiaoguang Wang, 2015. "Modeling and forecasting of stock index volatility with APARCH models under ordered restriction," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 329-356, August.
    14. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    15. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    16. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    17. Jorge Caiado, 2004. "Modelling And Forecasting The Volatility Of The Portuguese Stock Index Psi-20," Portuguese Journal of Management Studies, ISEG, Universidade de Lisboa, vol. 9(1), pages 3-21.
    18. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    19. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    20. Ntebogang Dinah Moroke, 2015. "An Optimal Generalized Autoregressive Conditional Heteroscedasticity Model for Forecasting the South African Inflation Volatility," Journal of Economics and Behavioral Studies, AMH International, vol. 7(4), pages 134-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:5:p:89-:d:550572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.