An IID Test for Functional Time Series with Applications to High-Frequency VIX Index Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Alexander Aue & Lajos Horváth & Daniel F. Pellatt, 2017.
"Functional Generalized Autoregressive Conditional Heteroskedasticity,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 3-21, January.
- Aue, Alexander & Horvath, Lajos & Pellatt, Daniel, 2015. "Functional generalized autoregressive conditional heteroskedasticity," MPRA Paper 67702, University Library of Munich, Germany.
- Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2023. "Exploring volatility of crude oil intraday return curves: A functional GARCH-X model," Journal of Commodity Markets, Elsevier, vol. 32(C).
- Han Lin Shang & Jiguo Cao & Peijun Sang, 2022. "Stopping time detection of wood panel compression: A functional time‐series approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1205-1224, November.
- Fernandes, Marcelo & Preumont, Pierre-Yves, 2012.
"The Finite-Sample Size of the BDS Test for GARCH Standardized Residuals,"
Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 32(2), April.
- Fernandes, Marcelo & Preumont, Pierre-Yves, 2014. "The finite-sample size of the BDS test for GARCH standardized residuals," Textos para discussão 361, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Mestre, Guillermo & Portela, José & Rice, Gregory & Muñoz San Roque, Antonio & Alonso, Estrella, 2021. "Functional time series model identification and diagnosis by means of auto- and partial autocorrelation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
- LeBaron Blake, 1997. "A Fast Algorithm for the BDS Statistic," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(2), pages 1-9, July.
- Han Lin Shang & Yang Yang & Fearghal Kearney, 2019. "Intraday forecasts of a volatility index: functional time series methods with dynamic updating," Annals of Operations Research, Springer, vol. 282(1), pages 331-354, November.
- Han Lin Shang, 2017. "Forecasting intraday S&P 500 index returns: A functional time series approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(7), pages 741-755, November.
- Chiou, Jeng-Min & Muller, Hans-Georg, 2007. "Diagnostics for functional regression via residual processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4849-4863, June.
- Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993.
"Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests,"
Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
- Tom Doan, "undated". "REGWHITENNTEST: RATS procedure to perform White neural network test on regression," Statistical Software Components RTS00183, Boston College Department of Economics.
- Tom Doan, "undated". "REGRESET: RATS procedure to perform Ramsey RESET test on regression," Statistical Software Components RTS00181, Boston College Department of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhenjie Liang & Futian Weng & Yuanting Ma & Yan Xu & Miao Zhu & Cai Yang, 2022. "Measurement and Analysis of High Frequency Assert Volatility Based on Functional Data Analysis," Mathematics, MDPI, vol. 10(7), pages 1-11, April.
- Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2019. "Tests for conditional heteroscedasticity with functional data and goodness-of-fit tests for FGARCH models," MPRA Paper 93048, University Library of Munich, Germany.
- Han Lin Shang & Kaiying Ji, 2023. "Forecasting intraday financial time series with sieve bootstrapping and dynamic updating," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 1973-1988, December.
- Luo, Wenya & Bai, Zhidong & Zheng, Shurong & Hui, Yongchang, 2020. "A modified BDS test," Statistics & Probability Letters, Elsevier, vol. 164(C).
- Zhuo Qiao & Keith Lam, 2011. "Granger causal relations among Greater China stock markets: a nonlinear perspective," Applied Financial Economics, Taylor & Francis Journals, vol. 21(19), pages 1437-1450.
- Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
- Hong, Seung Hyun & Phillips, Peter C. B., 2010.
"Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
- Seung Hyun Hong & Peter C. B. Phillips, 2005. "Testing Linearity in Cointegrating Relations with an Application to Purchasing Power Parity," Cowles Foundation Discussion Papers 1541, Cowles Foundation for Research in Economics, Yale University.
- Rebeca Jiménez-Rodríguez, 2004. "Oil Price Shocks: Testing for Non-linearity," CSEF Working Papers 115, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
- de Lima, Pedro J. F., 1997. "On the robustness of nonlinearity tests to moment condition failure," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 251-280.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Han Lin Shang, 2023. "Sieve bootstrapping the memory parameter in long-range dependent stationary functional time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 421-441, September.
- Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
- Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
- Corradi, Valentina & Swanson, Norman R., 2004.
"Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives,"
International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
- Valentina Corradi & Norman Swanson, 2003. "Some Recent Developments in Predictive Accuracy Testing With Nested Models and (Generic) Nonlinear Alternatives," Departmental Working Papers 200316, Rutgers University, Department of Economics.
- Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009.
"Information in the Revision Process of Real-Time Datasets,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
- Valentina Corradi & Andres Fernandez & Norman R. Swanson, 2008. "Information in the revision process of real-time datasets," Working Papers 08-27, Federal Reserve Bank of Philadelphia.
- Norman R. Swanson & Valentina Corradi & Andres Fernandez, 2011. "Information in the Revision Process of Real-Time Datasets," Departmental Working Papers 201107, Rutgers University, Department of Economics.
- Zacharias Psaradakis & Marián Vávra, 2019.
"Portmanteau tests for linearity of stationary time series,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 248-262, February.
- Marian Vavra, 2012. "Testing Non-linearity Using a Modified Q Test," Birkbeck Working Papers in Economics and Finance 1204, Birkbeck, Department of Economics, Mathematics & Statistics.
- Zacharias Psaradakis & Marian Vavra, 2016. "Portmanteau Tests for Linearity of Stationary Time Series," Working and Discussion Papers WP 1/2016, Research Department, National Bank of Slovakia.
- Zacharias Psaradakis & Marián Vávra, 2015. "Portmanteau Tests for Linearity of Stationary Time Series," Birkbeck Working Papers in Economics and Finance 1514, Birkbeck, Department of Economics, Mathematics & Statistics.
- Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.
- Richard T. Baillie & George Kapetanios, 2006.
"Nonlinear Models with Strongly Dependent Processes and Applications to Forward Premia and Real Exchange Rates,"
Working Papers
570, Queen Mary University of London, School of Economics and Finance.
- Richard T. Baillie & George Kapetanios, 2006. "Nonlinear Models with Strongly Dependent Processes and Applications to Forward Premia and Real Exchange Rates," Working Papers 570, Queen Mary University of London, School of Economics and Finance.
- Terasvirta, Timo, 2006.
"Forecasting economic variables with nonlinear models,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457,
Elsevier.
- Teräsvirta, Timo, 2005. "Forecasting economic variables with nonlinear models," SSE/EFI Working Paper Series in Economics and Finance 598, Stockholm School of Economics, revised 29 Dec 2005.
More about this item
Keywords
BDS test; functional GARCH model; functional autoregressive model; independence test; VIX index;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:13:y:2025:i:2:p:25-:d:1580573. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.