IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v80y2002i1p1-20.html
   My bibliography  Save this article

Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model

Author

Listed:
  • Hong, Sheng-Yan

Abstract

Accuracy of the normal approximation for Speckman's kernel smoothing estimator of the parametric component [beta] in the semiparametric regression model y=x[tau][beta]+g(t)+e is studied when the bandwidth used in the estimator is selected by a general data-based method which includes such commonly used bandwidth selectors as (delete-one-out) CV, GCV, and Mallows' CL criterion. We find that, contrary to what we might expect, this data-driven estimator cannot attain the optimal Berry-Esseen rate n-1/2. Consequently, the confidence region of [beta] based on this normal approximation is not first-order accurate. The reason for this is that the bias of Speckman's estimator is still of nonparametric order at the data-driven bandwidth choice. We then propose a resmoothing method to reduce the bias and show that the proposed estimator can achieve the optimal Berry-Esseen rate. A simulation study shows a slightly better small-sample performance of the proposed estimator.

Suggested Citation

  • Hong, Sheng-Yan, 2002. "Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 1-20, January.
  • Handle: RePEc:eee:jmvana:v:80:y:2002:i:1:p:1-20
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91925-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    2. Rice, John, 1986. "Convergence rates for partially splined models," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 203-208, June.
    3. Robinson, P M, 1995. "The Normal Approximation for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 63(3), pages 667-680, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You, Jinhong & Zhou, Xian & Zhou, Yong, 2010. "Statistical inference for panel data semiparametric partially linear regression models with heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1079-1101, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    2. Atak, Alev & Linton, Oliver & Xiao, Zhijie, 2011. "A semiparametric panel model for unbalanced data with application to climate change in the United Kingdom," Journal of Econometrics, Elsevier, vol. 164(1), pages 92-115, September.
    3. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    4. Wolfgang Härdle & Oliver Linton & Wang & Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers 11/03, Institute for Fiscal Studies.
    5. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    6. Wong, Heung & Liu, Feng & Chen, Min & Ip, Wai Cheung, 2009. "Empirical likelihood based diagnostics for heteroscedasticity in partial linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3466-3477, July.
    7. Boente, Graciela & Rodriguez, Daniela, 2008. "Robust bandwidth selection in semiparametric partly linear regression models: Monte Carlo study and influential analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2808-2828, January.
    8. Schick, Anton, 1996. "Root-n consistent estimation in partly linear regression models," Statistics & Probability Letters, Elsevier, vol. 28(4), pages 353-358, August.
    9. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
    10. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    11. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2014. "Small Bandwidth Asymptotics For Density-Weighted Average Derivatives," Econometric Theory, Cambridge University Press, vol. 30(1), pages 176-200, February.
    12. Gao, Jiti & Liang, Hua, 1995. "Asymptotic normality of pseudo-LS estimator for partly linear autoregression models," Statistics & Probability Letters, Elsevier, vol. 23(1), pages 27-34, April.
    13. Wang, Jia & Cai, Xizhen & Li, Runze, 2021. "Variable selection for partially linear models via Bayesian subset modeling with diffusing prior," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    14. Germán Aneiros-Pérez, 2004. "Plug-in bandwidth choice for estimation of nonparametric part in partial linear regression models with strong mixing errors," Statistical Papers, Springer, vol. 45(2), pages 191-210, April.
    15. Häggström, Jenny, 2013. "Bandwidth selection for backfitting estimation of semiparametric additive models: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 136-148.
    16. Ai, Chunrong & McFadden, Daniel, 1997. "Estimation of some partially specified nonlinear models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 1-37.
    17. Wang, Qihua & Härdle, Wolfgang & Linton, Oliver, 2002. "Semiparametric regression analysis under imputation for missing response data," SFB 373 Discussion Papers 2002,6, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    18. Feng Li & Lu Lin & Yuxia Su, 2013. "Variable selection and parameter estimation for partially linear models via Dantzig selector," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 225-238, February.
    19. You, Jinhong & Zhou, Xian, 2006. "Statistical inference in a panel data semiparametric regression model with serially correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 844-873, April.
    20. Bindele, Huybrechts F. & Abebe, Ash, 2015. "Semi-parametric rank regression with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 117-132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:80:y:2002:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.