IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i5p1079-1101.html
   My bibliography  Save this article

Statistical inference for panel data semiparametric partially linear regression models with heteroscedastic errors

Author

Listed:
  • You, Jinhong
  • Zhou, Xian
  • Zhou, Yong

Abstract

We consider a panel data semiparametric partially linear regression model with an unknown parameter vector for the linear parametric component, an unknown nonparametric function for the nonlinear component, and a one-way error component structure which allows unequal error variances (referred to as heteroscedasticity). We develop procedures to detect heteroscedasticity and one-way error component structure, and propose a weighted semiparametric least squares estimator (WSLSE) of the parametric component in the presence of heteroscedasticity and/or one-way error component structure. This WSLSE is asymptotically more efficient than the usual semiparametric least squares estimator considered in the literature. The asymptotic properties of the WSLSE are derived. The nonparametric component of the model is estimated by the local polynomial method. Some simulations are conducted to demonstrate the finite sample performances of the proposed testing and estimation procedures. An example of application on a set of panel data of medical expenditures in Australia is also illustrated.

Suggested Citation

  • You, Jinhong & Zhou, Xian & Zhou, Yong, 2010. "Statistical inference for panel data semiparametric partially linear regression models with heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1079-1101, May.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:5:p:1079-1101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00009-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Dette & A. Munk, 1998. "Testing heteroscedasticity in nonparametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 693-708.
    2. Hong, Sheng-Yan, 2002. "Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 1-20, January.
    3. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    4. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    5. Jianqing Fan & Qiwei Yao & Zongwu Cai, 2003. "Adaptive varying‐coefficient linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 57-80, February.
    6. Shi, Jian & Lau, Tai-Shing, 2000. "Empirical Likelihood for Partially Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 132-148, January.
    7. Li, Qi & Stengos, Thanasis, 1994. "Adaptive Estimation in the Panel Data Error Component Model with Heteroskedasticity of Unknown Form," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(4), pages 981-1000, November.
    8. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    9. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    10. Honore, Bo E, 1992. "Trimmed LAD and Least Squares Estimation of Truncated and Censored Regression Models with Fixed Effects," Econometrica, Econometric Society, vol. 60(3), pages 533-565, May.
    11. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 560-586, June.
    12. Gao, Jiti, 1995. "The laws of the iterated logarithm of some estimates in partly linear models," Statistics & Probability Letters, Elsevier, vol. 25(2), pages 153-162, November.
    13. Qi Li & Aman Ullha, 1998. "Estimating partially linear panel data models with one-way error components," Econometric Reviews, Taylor & Francis Journals, vol. 17(2), pages 145-166.
    14. Yu, K. & Jones, M.C., 2004. "Likelihood-Based Local Linear Estimation of the Conditional Variance Function," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 139-144, January.
    15. Delecroix, Michel & Härdle, Wolfgang & Hristache, Marian, 2003. "Efficient estimation in conditional single-index regression," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 213-226, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianhong Shi & Fanrong Zhao, 2018. "Statistical inference for heteroscedastic semi-varying coefficient EV models under restricted condition," Statistical Papers, Springer, vol. 59(2), pages 487-511, June.
    2. Rodriguez-Poo, Juan M. & Soberón, Alexandra, 2015. "Nonparametric estimation of fixed effects panel data varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 95-122.
    3. Jing-Jing Zhang & Han-Ying Liang & Amei Amei, 2014. "Asymptotic normality of estimators in heteroscedastic errors-in-variables model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 165-195, April.
    4. Hu, Jianhua & You, Jinhong & Zhou, Xian, 2017. "Improved estimation of fixed effects panel data partially linear models with heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 96-111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Jinhong & Zhou, Xian, 2006. "Statistical inference in a panel data semiparametric regression model with serially correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 844-873, April.
    2. You, Jinhong & Zhou, Xian, 2005. "The law of iterated logarithm of estimators for partially linear panel data models," Statistics & Probability Letters, Elsevier, vol. 75(4), pages 267-279, December.
    3. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    4. Wong, Heung & Liu, Feng & Chen, Min & Ip, Wai Cheung, 2009. "Empirical likelihood based diagnostics for heteroscedasticity in partial linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3466-3477, July.
    5. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    6. You, Jinhong & Chen, Gemai & Zhou, Yong, 2007. "Statistical inference of partially linear regression models with heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1539-1557, September.
    7. Jinhong You & Xian Zhou, 2010. "Statistical inference on seemingly unrelated varying coefficient partially linear models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(2), pages 227-253, May.
    8. Hübler, Olaf, 2005. "Panel Data Econometrics: Modelling and Estimation," Hannover Economic Papers (HEP) dp-319, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    9. Zongwu Cai & Linna Chen & Ying Fang, 2015. "Semiparametric Estimation of Partially Varying-Coefficient Dynamic Panel Data Models," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 695-719, December.
    10. Huang, Zhensheng & Zhou, Zhangong & Jiang, Rong & Qian, Weimin & Zhang, Riquan, 2010. "Empirical likelihood based inference for semiparametric varying coefficient partially linear models with error-prone linear covariates," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 497-504, March.
    11. Su, Liangjun & Jin, Sainan, 2010. "Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 157(1), pages 18-33, July.
    12. Ai, Chunrong & You, Jinhong & Zhou, Yong, 2011. "Statistical inference using a weighted difference-based series approach for partially linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 601-618, March.
    13. Liu, Jun M. & Chen, Rong & Yao, Qiwei, 2010. "Nonparametric transfer function models," Journal of Econometrics, Elsevier, vol. 157(1), pages 151-164, July.
    14. You, Jinhong & Chen, Gemai, 2006. "Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 324-341, February.
    15. Liu, Jun M. & Chen, Rong & Yao, Qiwei, 2010. "Nonparametric transfer function models," LSE Research Online Documents on Economics 28868, London School of Economics and Political Science, LSE Library.
    16. Jianhong Shi & Qian Yang & Xiongya Li & Weixing Song, 2017. "Effects of measurement error on a class of single-index varying coefficient regression models," Computational Statistics, Springer, vol. 32(3), pages 977-1001, September.
    17. Wong, Heung & Ip, Wai-cheung & Zhang, Riquan, 2008. "Varying-coefficient single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1458-1476, January.
    18. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    19. Holger Dette & Kay Pilz, 2009. "On the estimation of a monotone conditional variance in nonparametric regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 111-141, March.
    20. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:5:p:1079-1101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.