IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i3p698-719.html
   My bibliography  Save this article

Estimation of multivariate normal covariance and precision matrices in a star-shape model with missing data

Author

Listed:
  • Sun, Dongchu
  • Sun, Xiaoqian

Abstract

In this paper, we study the problem of estimating the covariance matrix [Sigma] and the precision matrix [Omega] (the inverse of the covariance matrix) in a star-shape model with missing data. By considering a type of Cholesky decomposition of the precision matrix [Omega]=[Psi]'[Psi], where [Psi] is a lower triangular matrix with positive diagonal elements, we get the MLEs of the covariance matrix and precision matrix and prove that both of them are biased. Based on the MLEs, unbiased estimators of the covariance matrix and precision matrix are obtained. A special group , which is a subgroup of the group consisting all lower triangular matrices, is introduced. By choosing the left invariant Haar measure on as a prior, we obtain the closed forms of the best equivariant estimates of [Omega] under any of the Stein loss, the entropy loss, and the symmetric loss. Consequently, the MLE of the precision matrix (covariance matrix) is inadmissible under any of the above three loss functions. Some simulation results are given for illustration.

Suggested Citation

  • Sun, Dongchu & Sun, Xiaoqian, 2006. "Estimation of multivariate normal covariance and precision matrices in a star-shape model with missing data," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 698-719, March.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:3:p:698-719
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00153-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tatsuya Kubokawa & Yoshihiko Konno, 1990. "Estimating the covariance matrix and the generalized variance under a symmetric loss," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 331-343, June.
    2. Konno, Y., 1995. "Estimation of a Normal Covariance Matrix with Incomplete Data under Stein's Loss," Journal of Multivariate Analysis, Elsevier, vol. 52(2), pages 308-324, February.
    3. Liu, Chuanhai, 1999. "Efficient ML Estimation of the Multivariate Normal Distribution from Incomplete Data," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 206-217, May.
    4. Dongchu Sun & Xiaoqian Sun, 2005. "Estimation of the multivariate normal precision and covariance matrices in a star-shape model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 455-484, September.
    5. Konno, Yoshihiko, 2001. "Inadmissibility of the Maximum Likekihood Estimator of Normal Covariance Matrices with the Lattice Conditional Independence," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 33-51, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Daojiang & Xu, Kai, 2014. "Estimation of the Cholesky decomposition in a conditional independent normal model with missing data," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 27-39.
    2. Withers, Christopher S. & Nadarajah, Saralees, 2011. "Estimates of low bias for the multivariate normal," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1635-1647, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqian Sun & Dongchu Sun, 2007. "Estimation of a Multivariate Normal Covariance Matrix with Staircase Pattern Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 211-233, June.
    2. Dongchu Sun & Xiaoqian Sun, 2005. "Estimation of the multivariate normal precision and covariance matrices in a star-shape model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 455-484, September.
    3. Liang, Ye & Sun, Dongchu, 2012. "Objective priors for generative star-shape models," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 991-997.
    4. He, Daojiang & Xu, Kai, 2014. "Estimation of the Cholesky decomposition in a conditional independent normal model with missing data," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 27-39.
    5. Ledoit, Olivier & Wolf, Michael, 2021. "Shrinkage estimation of large covariance matrices: Keep it simple, statistician?," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    6. Withers, Christopher S. & Nadarajah, Saralees, 2011. "Estimates of low bias for the multivariate normal," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1635-1647, November.
    7. Konno, Yoshihiko, 2007. "Estimation of normal covariance matrices parametrized by irreducible symmetric cones under Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 295-316, February.
    8. Ding, Peng, 2014. "Bayesian robust inference of sample selection using selection-t models," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 451-464.
    9. Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering via mixtures of t factor analyzers with incomplete data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 659-690, September.
    10. Tang, Man-Lai & Wang Ng, Kai & Tian, Guo-Liang & Tan, Ming, 2007. "On improved EM algorithm and confidence interval construction for incomplete rxc tables," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2919-2933, March.
    11. Lin, Tsung I. & Ho, Hsiu J. & Chen, Chiang L., 2009. "Analysis of multivariate skew normal models with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2337-2351, November.
    12. Katori, Makoto & Konno, Norio, 1992. "On the extinction of Dickman's reaction- diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 186(3), pages 578-590.
    13. Richards, Donald St. P. & Yamada, Tomoya, 2010. "The Stein phenomenon for monotone incomplete multivariate normal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 657-678, March.
    14. Panayiotis Bobotas & George Iliopoulos & Stavros Kourouklis, 2012. "Estimating the ratio of two scale parameters: a simple approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 343-357, April.
    15. Tsukuma, Hisayuki, 2016. "Minimax estimation of a normal covariance matrix with the partial Iwasawa decomposition," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 190-207.
    16. Wan-Lun Wang & Min Liu & Tsung-I Lin, 2017. "Robust skew-t factor analysis models for handling missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 649-672, November.
    17. Konno, Yoshihiko, 2001. "Inadmissibility of the Maximum Likekihood Estimator of Normal Covariance Matrices with the Lattice Conditional Independence," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 33-51, October.
    18. Misra, Neeraj & Singh, Harshinder & Demchuk, Eugene, 2005. "Estimation of the entropy of a multivariate normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 324-342, February.
    19. Iliopoulos, George, 2008. "UMVU estimation of the ratio of powers of normal generalized variances under correlation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1051-1069, July.
    20. Iliopoulos, George & Kourouklis, Stavros, 1999. "Improving on the Best Affine Equivariant Estimator of the Ratio of Generalized Variances," Journal of Multivariate Analysis, Elsevier, vol. 68(2), pages 176-192, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:3:p:698-719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.