Finite-sample inference with monotone incomplete multivariate normal data, I
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Roussas, George G., 2001. "An Esséen-type inequality for probability density functions, with an application," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 397-408, February.
- Andersson, S. A. & Perlman, M. D., 1995. "Testing Lattice Conditional Independence Models," Journal of Multivariate Analysis, Elsevier, vol. 53(1), pages 18-38, April.
- R. Bhargava, 1975. "Some one-sample hypothesis testing problems when there is a monotone sample from a multivariate normal population," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 27(1), pages 327-339, December.
- Andersson, Steen A. & Perlman, Michael D., 1991. "Lattice-ordered conditional independence models for missing data," Statistics & Probability Letters, Elsevier, vol. 12(6), pages 465-486, December.
- Hao, Jian & Krishnamoorthy, K., 2001. "Inferences on a Normal Covariance Matrix and Generalized Variance with Monotone Missing Data," Journal of Multivariate Analysis, Elsevier, vol. 78(1), pages 62-82, July.
- Andersson, S. A. & Perlman, M. D., 1995. "Unbiasedness of the Likelihood Ratio Test for Lattice Conditional Independence Models," Journal of Multivariate Analysis, Elsevier, vol. 53(1), pages 1-17, April.
- K. Krishnamoorthy & Maruthy Pannala, 1998. "Some Simple Test Procedures for Normal Mean Vector with Incomplete Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(3), pages 531-542, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Richards, Donald St. P. & Yamada, Tomoya, 2010. "The Stein phenomenon for monotone incomplete multivariate normal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 657-678, March.
- Tsukada, Shin-ichi, 2024. "Hypothesis testing for mean vector and covariance matrix of multi-populations under a two-step monotone incomplete sample in large sample and dimension," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Tsukada, Shin-ichi, 2014. "Equivalence testing of mean vector and covariance matrix for multi-populations under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 183-196.
- Tsukada, Shin-ichi, 2014. "Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 206-219.
- Tomoya Yamada & Megan Romer & Donald Richards, 2015. "Kurtosis tests for multivariate normality with monotone incomplete data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 532-557, September.
- Krishnamoorthy, K., 2013. "Comparison of confidence intervals for correlation coefficients based on incomplete monotone samples and those based on listwise deletion," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 378-388.
- Keiji Takai & Kenichi Hayashi, 2023. "Model Selection with Missing Data Embedded in Missing-at-Random Data," Stats, MDPI, vol. 6(2), pages 1-11, April.
- Romer, Megan M. & Richards, Donald St. P., 2010. "Maximum likelihood estimation of the mean of a multivariate normal population with monotone incomplete data," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1284-1288, September.
- Chang, Wan-Ying & Richards, Donald St. P., 2010. "Finite-sample inference with monotone incomplete multivariate normal data, II," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 603-620, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Batsidis, A. & Zografos, K. & Loukas, S., 2006. "Errors in discrimination with monotone missing data from multivariate normal populations," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2600-2634, June.
- Jinfang Wang, 2010. "A universal algebraic approach for conditional independence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(4), pages 747-773, August.
- Wu, Lang & Perlman, Michael D., 2000. "Testing lattice conditional independence models based on monotone missing data," Statistics & Probability Letters, Elsevier, vol. 50(2), pages 193-201, November.
- Andersson, Steen A. & Perlman, Michael D., 1998. "Normal Linear Regression Models With Recursive Graphical Markov Structure," Journal of Multivariate Analysis, Elsevier, vol. 66(2), pages 133-187, August.
- Richards, Donald St. P. & Yamada, Tomoya, 2010. "The Stein phenomenon for monotone incomplete multivariate normal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 657-678, March.
- Yin, Yanqing, 2021. "Test for high-dimensional mean vector under missing observations," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
- Konno, Yoshihiko, 2001. "Inadmissibility of the Maximum Likekihood Estimator of Normal Covariance Matrices with the Lattice Conditional Independence," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 33-51, October.
- Drton, Mathias & Andersson, Steen A. & Perlman, Michael D., 2006. "Conditional independence models for seemingly unrelated regressions with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 385-411, February.
- Krishnamoorthy, K., 2013. "Comparison of confidence intervals for correlation coefficients based on incomplete monotone samples and those based on listwise deletion," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 378-388.
- Chang, Wan-Ying & Richards, Donald St. P., 2010. "Finite-sample inference with monotone incomplete multivariate normal data, II," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 603-620, March.
- Hironori Fujisawa, 1996. "The maximum likelihood estimators in a multivariate normal distribution with AR(1) covariance structure for monotone data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 423-428, September.
- Tsukada, Shin-ichi, 2024. "Hypothesis testing for mean vector and covariance matrix of multi-populations under a two-step monotone incomplete sample in large sample and dimension," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Tsukada, Shin-ichi, 2014. "Equivalence testing of mean vector and covariance matrix for multi-populations under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 183-196.
- Hélène Massam & Erhard Neher, 1997. "On Transformations and Determinants of Wishart Variables on Symmetric Cones," Journal of Theoretical Probability, Springer, vol. 10(4), pages 867-902, October.
- Kurita, Eri & Seo, Takashi, 2022. "Multivariate normality test based on kurtosis with two-step monotone missing data," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Li, Yongming & Yang, Shanchao & Wei, Chengdong, 2011. "Some inequalities for strong mixing random variables with applications to density estimation," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 250-258, February.
- Nobumichi Shutoh & Takahiro Nishiyama & Masashi Hyodo, 2017. "Bartlett correction to the likelihood ratio test for MCAR with two-step monotone sample," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(3), pages 184-199, August.
- Tsukada, Shin-ichi, 2014. "Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 206-219.
- Wu, Mi-Xia & Yu, Kai-Fun, 2008. "Remarks on between estimator in the intraclass correlation model with missing data," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2444-2452, November.
- Yu, Jianqi & Krishnamoorthy, K. & Pannala, Maruthy K., 2006. "Two-sample inference for normal mean vectors based on monotone missing data," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2162-2176, November.
More about this item
Keywords
Ellipsoidal confidence regions Hotelling's T2-statistic Matrix -distribution Maximum likelihood estimation Missing completely at random Multivariate Esseen's inequality Simultaneous confidence intervals Wishart distribution;JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:9:p:1883-1899. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.