IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v204y2024ics0047259x24000630.html
   My bibliography  Save this article

The inner partial least square: An exploration of the “necessary” dimension reduction

Author

Listed:
  • Yin, Yunjian
  • Liu, Lan

Abstract

The partial least square (PLS) algorithm retains the combinations of predictors that maximize the covariance with the outcome. Cook et al. (2013) showed that PLS results in a predictor envelope, which is the smallest reducing subspace of predictors’ covariance that contains the coefficient. However, PLS and predictor envelope both target at a space that contains the regression coefficients and therefore they may sometimes be too conservative to reduce the dimension of the predictors. In this paper, we propose a new method that may improve the estimation efficiency of regression coefficients when both PLS and predictor envelope fail to do so. Specifically, our method results in the largest reducing subspace of predictors’ covariance that is contained in the coefficient matrix space. Interestingly, the moment based algorithm of our proposed method can be achieved by changing the max in PLS to min. We define the modified PLS as the inner PLS and the resulting space as the inner predictor envelope space. We provide the theoretical properties of our proposed methods as well as demonstrate their use in China Health and Nutrition Survey.

Suggested Citation

  • Yin, Yunjian & Liu, Lan, 2024. "The inner partial least square: An exploration of the “necessary” dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:jmvana:v:204:y:2024:i:c:s0047259x24000630
    DOI: 10.1016/j.jmva.2024.105356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:204:y:2024:i:c:s0047259x24000630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.