IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v26y2017i1d10.1007_s11749-016-0496-0.html
   My bibliography  Save this article

Robust and efficient direction identification for groupwise additive multiple-index models and its applications

Author

Listed:
  • Kangning Wang

    (Shandong Technology and Business University
    Chongqing University of Arts and Sciences)

  • Lu Lin

    (Shandong University)

Abstract

This paper concerns robust and efficient direction identification for a groupwise additive multiple-index model, in which each additive function has a single-index structure. Interestingly, without involving non-parametric approach, we show that the directions of all the index parameter vectors can be recovered by a simple linear composite quantile regression (CQR). As a specific application, a iterative-free CQR estimation procedure for the partially linear single-index model is proposed. Furthermore, it can also be used to develop a penalized CQR procedure for variable selection in the high-dimensional settings. The new method has superiority in robustness and efficiency by inheriting the advantage of the CQR approach. Simulation results and real-data analysis also confirm our method.

Suggested Citation

  • Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
  • Handle: RePEc:spr:testjl:v:26:y:2017:i:1:d:10.1007_s11749-016-0496-0
    DOI: 10.1007/s11749-016-0496-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-016-0496-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-016-0496-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single‐index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570, June.
    2. Jelena Bradic & Jianqing Fan & Weiwei Wang, 2011. "Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 325-349, June.
    3. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    5. Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
    6. Feng, Zhenghui & Wang, Tao & Zhu, Lixing, 2014. "Transformation-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 186-205.
    7. Li, Lexin & Li, Bing & Zhu, Li-Xing, 2010. "Groupwise Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1188-1201.
    8. Zhao, Zhibiao & Xiao, Zhijie, 2014. "Efficient Regressions Via Optimally Combining Quantile Information," Econometric Theory, Cambridge University Press, vol. 30(6), pages 1272-1314, December.
    9. Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2015. "Quantile regression and variable selection of partial linear single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 375-409, April.
    10. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    11. Jiang, Rong & Zhou, Zhan-Gong & Qian, Wei-Min & Chen, Yong, 2013. "Two step composite quantile regression for single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 180-191.
    12. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    13. Yanyuan Ma & Liping Zhu, 2013. "Doubly robust and efficient estimators for heteroscedastic partially linear single-index models allowing high dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 305-322, March.
    14. Fan, Yan & Härdle, Wolfgang Karl & Wang, Weining & Zhu, Lixing, 2013. "Composite quantile regression for the single-index model," SFB 649 Discussion Papers 2013-010, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Xu, Peirong & Zhu, Lixing, 2012. "Estimation for a marginal generalized single-index longitudinal model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 285-299.
    16. Zhu, Li-Ping & Zhu, Li-Xing, 2009. "Nonconcave penalized inverse regression in single-index models with high dimensional predictors," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 862-875, May.
    17. Cook, R. Dennis & Ni, Liqiang, 2005. "Sufficient Dimension Reduction via Inverse Regression: A Minimum Discrepancy Approach," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 410-428, June.
    18. Yuexiao Dong & Bing Li, 2010. "Dimension reduction for non-elliptically distributed predictors: second-order methods," Biometrika, Biometrika Trust, vol. 97(2), pages 279-294.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Rong & Qian, Wei-Min, 2016. "Quantile regression for single-index-coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 305-317.
    2. Jiang, Rong & Zhou, Zhan-Gong & Qian, Wei-Min & Chen, Yong, 2013. "Two step composite quantile regression for single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 180-191.
    3. Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2015. "Quantile regression and variable selection of partial linear single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 375-409, April.
    4. Yang, Hu & Yang, Jing, 2014. "A robust and efficient estimation and variable selection method for partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 227-242.
    5. Rong Jiang & Wei-Min Qian & Zhan-Gong Zhou, 2016. "Single-index composite quantile regression with heteroscedasticity and general error distributions," Statistical Papers, Springer, vol. 57(1), pages 185-203, March.
    6. Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
    7. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    8. Feng, Zhenghui & Wang, Tao & Zhu, Lixing, 2014. "Transformation-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 186-205.
    9. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    10. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Hong-Xia Xu & Guo-Liang Fan & Zhen-Long Chen & Jiang-Feng Wang, 2018. "Weighted quantile regression and testing for varying-coefficient models with randomly truncated data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 565-588, October.
    12. Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.
    13. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    14. Yongjin Li & Qingzhao Zhang & Qihua Wang, 2017. "Penalized estimation equation for an extended single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 169-187, February.
    15. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    16. Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    17. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    18. Chaohua Dong & Jiti Gao & Dag Tjostheim, 2014. "Estimation for Single-index and Partially Linear Single-index Nonstationary Time Series Models," Monash Econometrics and Business Statistics Working Papers 7/14, Monash University, Department of Econometrics and Business Statistics.
    19. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    20. Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:26:y:2017:i:1:d:10.1007_s11749-016-0496-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.