Inner envelopes: efficient estimation in multivariate linear regression
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- R. D. Cook & I. S. Helland & Z. Su, 2013. "Envelopes and partial least squares regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 851-877, November.
- Lasanthi C. R. Pelawa Watagoda & David J. Olive, 2021. "Comparing six shrinkage estimators with large sample theory and asymptotically optimal prediction intervals," Statistical Papers, Springer, vol. 62(5), pages 2407-2431, October.
- Minji Lee & Zhihua Su, 2020. "A Review of Envelope Models," International Statistical Review, International Statistical Institute, vol. 88(3), pages 658-676, December.
- Yue Zhao & Ingrid Van Keilegom & Shanshan Ding, 2022. "Envelopes for censored quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1562-1585, December.
- Iaci, Ross & Yin, Xiangrong & Zhu, Lixing, 2016. "The Dual Central Subspaces in dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 178-189.
- Yeonhee Park & Zhihua Su & Hongtu Zhu, 2017. "Groupwise envelope models for imaging genetic analysis," Biometrics, The International Biometric Society, vol. 73(4), pages 1243-1253, December.
- Cook, R. Dennis & Su, Zhihua & Yang, Yi, 2015. "envlp: A MATLAB Toolbox for Computing Envelope Estimators in Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i08).
- David J. Olive, 2018. "Applications of hyperellipsoidal prediction regions," Statistical Papers, Springer, vol. 59(3), pages 913-931, September.
- Yu Wu & Jing Zhang, 2024. "Efficient Estimation and Response Variable Selection in Sparse Partial Envelope Model," Mathematics, MDPI, vol. 12(23), pages 1-28, November.
- Lan Liu & Wei Li & Zhihua Su & Dennis Cook & Luca Vizioli & Essa Yacoub, 2022. "Efficient estimation via envelope chain in magnetic resonance imagingābased studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 481-501, June.
- Lasanthi C. R. Pelawa Watagoda & David J. Olive, 2021. "Bootstrapping multiple linear regression after variable selection," Statistical Papers, Springer, vol. 62(2), pages 681-700, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:3:p:687-702. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.