IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v150y2016icp42-54.html
   My bibliography  Save this article

A note on fast envelope estimation

Author

Listed:
  • Cook, R. Dennis
  • Forzani, Liliana
  • Su, Zhihua

Abstract

We propose a new algorithm for envelope estimation, along with a new n-consistent method for computing starting values. The new algorithm, which does not require optimization over a Grassmannian, is shown by simulation to be much faster and typically more accurate than the best existing algorithm proposed by Cook and Zhang (2016).

Suggested Citation

  • Cook, R. Dennis & Forzani, Liliana & Su, Zhihua, 2016. "A note on fast envelope estimation," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 42-54.
  • Handle: RePEc:eee:jmvana:v:150:y:2016:i:c:p:42-54
    DOI: 10.1016/j.jmva.2016.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16300276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Dennis Cook & Xin Zhang, 2015. "Foundations for Envelope Models and Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 599-611, June.
    2. Hongtu Zhu & Zakaria Khondker & Zhaohua Lu & Joseph G. Ibrahim, 2014. "Bayesian Generalized Low Rank Regression Models for Neuroimaging Phenotypes and Genetic Markers," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 977-990, September.
    3. R. Dennis Cook & Bing Li & Francesca Chiaromonte, 2007. "Dimension reduction in regression without matrix inversion," Biometrika, Biometrika Trust, vol. 94(3), pages 569-584.
    4. R. D. Cook & I. S. Helland & Z. Su, 2013. "Envelopes and partial least squares regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 851-877, November.
    5. Zhihua Su & R. Dennis Cook, 2011. "Partial envelopes for efficient estimation in multivariate linear regression," Biometrika, Biometrika Trust, vol. 98(1), pages 133-146.
    6. Kudraszow, Nadia L. & Maronna, Ricardo A., 2011. "Estimates of MM type for the multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1280-1292, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. May, Paul & Biesecker, Matthew & Rekabdarkolaee, Hossein Moradi, 2022. "Response envelopes for linear coregionalization models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. Minji Lee & Zhihua Su, 2020. "A Review of Envelope Models," International Statistical Review, International Statistical Institute, vol. 88(3), pages 658-676, December.
    3. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Yue Zhao & Ingrid Van Keilegom & Shanshan Ding, 2022. "Envelopes for censored quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1562-1585, December.
    5. Guo, Wenxing & Balakrishnan, Narayanaswamy & He, Mu, 2023. "Envelope-based sparse reduced-rank regression for multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    6. Alexander M. Franks, 2022. "Reducing subspace models for large‐scale covariance regression," Biometrics, The International Biometric Society, vol. 78(4), pages 1604-1613, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
    2. Yeonhee Park & Zhihua Su & Hongtu Zhu, 2017. "Groupwise envelope models for imaging genetic analysis," Biometrics, The International Biometric Society, vol. 73(4), pages 1243-1253, December.
    3. Minji Lee & Zhihua Su, 2020. "A Review of Envelope Models," International Statistical Review, International Statistical Institute, vol. 88(3), pages 658-676, December.
    4. Yue Zhao & Ingrid Van Keilegom & Shanshan Ding, 2022. "Envelopes for censored quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1562-1585, December.
    5. D. J. Eck & R. D. Cook, 2017. "Weighted envelope estimation to handle variability in model selection," Biometrika, Biometrika Trust, vol. 104(3), pages 743-749.
    6. Ekvall, Karl Oskar, 2022. "Targeted principal components regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    7. Jain Yashita & Ding Shanshan & Qiu Jing, 2019. "Sliced inverse regression for integrative multi-omics data analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(1), pages 1-13, February.
    8. Dennis Cook, R. & Forzani, Liliana, 2023. "On the role of partial least squares in path analysis for the social sciences," Journal of Business Research, Elsevier, vol. 167(C).
    9. May, Paul & Biesecker, Matthew & Rekabdarkolaee, Hossein Moradi, 2022. "Response envelopes for linear coregionalization models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    10. Li, Gen & Yang, Dan & Nobel, Andrew B. & Shen, Haipeng, 2016. "Supervised singular value decomposition and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 7-17.
    11. Iaci, Ross & Yin, Xiangrong & Zhu, Lixing, 2016. "The Dual Central Subspaces in dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 178-189.
    12. Cook, R. Dennis, 2022. "A slice of multivariate dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    13. Hung Hung & Su‐Yun Huang, 2019. "Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem," Biometrics, The International Biometric Society, vol. 75(1), pages 245-255, March.
    14. Durante, Daniele, 2017. "A note on the multiplicative gamma process," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 198-204.
    15. Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
    16. Kai Deng & Xin Zhang, 2022. "Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction," Biometrics, The International Biometric Society, vol. 78(3), pages 1067-1079, September.
    17. Lan Liu & Wei Li & Zhihua Su & Dennis Cook & Luca Vizioli & Essa Yacoub, 2022. "Efficient estimation via envelope chain in magnetic resonance imaging‐based studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 481-501, June.
    18. Alessandro Barbarino & Efstathia Bura, 2015. "Forecasting with Sufficient Dimension Reductions," Finance and Economics Discussion Series 2015-74, Board of Governors of the Federal Reserve System (U.S.).
    19. Dong, Yushen & Wu, Yichao, 2022. "Fréchet kernel sliced inverse regression," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    20. Nie Yunlong & Opoku Eugene & Yasmin Laila & Song Yin & Wang Jie & Wu Sidi & Scarapicchia Vanessa & Gawryluk Jodie & Wang Liangliang & Cao Jiguo & Nathoo Farouk S., 2020. "Spectral dynamic causal modelling of resting-state fMRI: an exploratory study relating effective brain connectivity in the default mode network to genetics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(3), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:150:y:2016:i:c:p:42-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.