IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v73y2017i4p1243-1253.html
   My bibliography  Save this article

Groupwise envelope models for imaging genetic analysis

Author

Listed:
  • Yeonhee Park
  • Zhihua Su
  • Hongtu Zhu

Abstract

Motivated by searching for associations between genetic variants and brain imaging phenotypes, the aim of this article is to develop a groupwise envelope model for multivariate linear regression in order to establish the association between both multivariate responses and covariates. The groupwise envelope model allows for both distinct regression coefficients and distinct error structures for different groups. Statistically, the proposed envelope model can dramatically improve efficiency of tests and of estimation. Theoretical properties of the proposed model are established. Numerical experiments as well as the analysis of an imaging genetic data set obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study show the effectiveness of the model in efficient estimation. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

Suggested Citation

  • Yeonhee Park & Zhihua Su & Hongtu Zhu, 2017. "Groupwise envelope models for imaging genetic analysis," Biometrics, The International Biometric Society, vol. 73(4), pages 1243-1253, December.
  • Handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1243-1253
    DOI: 10.1111/biom.12689
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12689
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Dennis Cook & Xin Zhang, 2015. "Foundations for Envelope Models and Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 599-611, June.
    2. Zhihua Su & R. Dennis Cook, 2012. "Inner envelopes: efficient estimation in multivariate linear regression," Biometrika, Biometrika Trust, vol. 99(3), pages 687-702.
    3. Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
    4. Lexin Li & Xin Zhang, 2017. "Parsimonious Tensor Response Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1131-1146, July.
    5. Hongtu Zhu & Zakaria Khondker & Zhaohua Lu & Joseph G. Ibrahim, 2014. "Bayesian Generalized Low Rank Regression Models for Neuroimaging Phenotypes and Genetic Markers," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 977-990, September.
    6. R. D. Cook & I. S. Helland & Z. Su, 2013. "Envelopes and partial least squares regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 851-877, November.
    7. Zhihua Su & R. Dennis Cook, 2011. "Partial envelopes for efficient estimation in multivariate linear regression," Biometrika, Biometrika Trust, vol. 98(1), pages 133-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minji Lee & Zhihua Su, 2020. "A Review of Envelope Models," International Statistical Review, International Statistical Institute, vol. 88(3), pages 658-676, December.
    2. Dennis Cook, R. & Forzani, Liliana, 2023. "On the role of partial least squares in path analysis for the social sciences," Journal of Business Research, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minji Lee & Zhihua Su, 2020. "A Review of Envelope Models," International Statistical Review, International Statistical Institute, vol. 88(3), pages 658-676, December.
    2. Yue Zhao & Ingrid Van Keilegom & Shanshan Ding, 2022. "Envelopes for censored quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1562-1585, December.
    3. Cook, R. Dennis & Forzani, Liliana & Su, Zhihua, 2016. "A note on fast envelope estimation," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 42-54.
    4. Lan Liu & Wei Li & Zhihua Su & Dennis Cook & Luca Vizioli & Essa Yacoub, 2022. "Efficient estimation via envelope chain in magnetic resonance imagingā€based studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 481-501, June.
    5. D. J. Eck & R. D. Cook, 2017. "Weighted envelope estimation to handle variability in model selection," Biometrika, Biometrika Trust, vol. 104(3), pages 743-749.
    6. May, Paul & Biesecker, Matthew & Rekabdarkolaee, Hossein Moradi, 2022. "Response envelopes for linear coregionalization models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    7. Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
    8. Iaci, Ross & Yin, Xiangrong & Zhu, Lixing, 2016. "The Dual Central Subspaces in dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 178-189.
    9. Jain Yashita & Ding Shanshan & Qiu Jing, 2019. "Sliced inverse regression for integrative multi-omics data analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(1), pages 1-13, February.
    10. Kai Deng & Xin Zhang, 2022. "Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction," Biometrics, The International Biometric Society, vol. 78(3), pages 1067-1079, September.
    11. R. D. Cook & I. S. Helland & Z. Su, 2013. "Envelopes and partial least squares regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 851-877, November.
    12. Lasanthi C. R. Pelawa Watagoda & David J. Olive, 2021. "Comparing six shrinkage estimators with large sample theory and asymptotically optimal prediction intervals," Statistical Papers, Springer, vol. 62(5), pages 2407-2431, October.
    13. Ekvall, Karl Oskar, 2022. "Targeted principal components regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    14. Cook, R. Dennis & Su, Zhihua & Yang, Yi, 2015. "envlp: A MATLAB Toolbox for Computing Envelope Estimators in Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i08).
    15. Li, Gen & Yang, Dan & Nobel, Andrew B. & Shen, Haipeng, 2016. "Supervised singular value decomposition and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 7-17.
    16. Dennis Cook, R. & Forzani, Liliana, 2023. "On the role of partial least squares in path analysis for the social sciences," Journal of Business Research, Elsevier, vol. 167(C).
    17. Cook, R. Dennis, 2022. "A slice of multivariate dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    18. Durante, Daniele, 2017. "A note on the multiplicative gamma process," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 198-204.
    19. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    20. Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1243-1253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.