IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v189y2022ics0047259x21002062.html
   My bibliography  Save this article

Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution

Author

Listed:
  • Galarza, Christian E.
  • Matos, Larissa A.
  • Castro, Luis M.
  • Lachos, Victor H.

Abstract

In this paper, we compute doubly truncated moments for the selection elliptical class of distributions, including some multivariate asymmetric versions of well-known elliptical distributions, such as the normal, Student’s t, slash, among others. We address the moments for doubly truncated members of this family, establishing neat formulation for high-order moments and its first two moments. We establish sufficient and necessary conditions for the existence of these truncated moments. Further, we propose optimized methods to handle the extreme setting of the parameters, partitions with almost zero volume or no truncation, which are validated with numerical studies. All results have been particularized to the unified skew-t distribution, a complex multivariate asymmetric heavy-tailed distribution which includes the extended skew-t, extended skew-normal, skew-t, and skew-normal distributions as particular and limiting cases.

Suggested Citation

  • Galarza, Christian E. & Matos, Larissa A. & Castro, Luis M. & Lachos, Victor H., 2022. "Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21002062
    DOI: 10.1016/j.jmva.2021.104944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21002062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
    2. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    3. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    4. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Saralees Nadarajah, 2007. "A truncated bivariate inverted dirichlet distribution," Statistica, Department of Statistics, University of Bologna, vol. 67(2), pages 213-221.
    7. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    8. Katherine A. L. Valeriano & Victor H. Lachos & Marcos O. Prates & Larissa A. Matos, 2021. "Likelihood‐based inference for spatiotemporal data with censored and missing responses," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    9. Roozegar, Roohollah & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2020. "On moments of doubly truncated multivariate normal mean–variance mixture distributions with application to multivariate tail conditional expectation," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    10. Cedric Flecher & Denis Allard & Philippe Naveau, 2010. "Truncated skew-normal distributions: moments, estimation by weighted moments and application to climatic data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 331-345.
    11. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    12. Lachos, Víctor H. & Moreno, Edgar J. López & Chen, Kun & Cabral, Celso Rômulo Barbosa, 2017. "Finite mixture modeling of censored data using the multivariate Student-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 151-167.
    13. Reinaldo B. Arellano‐Valle & Adelchi Azzalini, 2006. "On the Unification of Families of Skew‐normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 561-574, September.
    14. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    15. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, October.
    16. Christian E. Galarza & Tsung-I Lin & Wan-Lun Wang & Víctor H. Lachos, 2021. "On moments of folded and truncated multivariate Student-t distributions based on recurrence relations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(6), pages 825-850, August.
    17. Ogasawara, Haruhiko, 2021. "A non-recursive formula for various moments of the multivariate normal distribution with sectional truncation," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    18. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    19. C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raúl Alejandro Morán-Vásquez & Edwin Zarrazola & Daya K. Nagar, 2022. "Some Statistical Aspects of the Truncated Multivariate Skew- t Distribution," Mathematics, MDPI, vol. 10(15), pages 1-14, August.
    2. Baishuai Zuo & Chuancun Yin, 2022. "Multivariate doubly truncated moments for generalized skew-elliptical distributions with application to multivariate tail conditional risk measures," Papers 2203.00839, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.
    3. Raúl Alejandro Morán-Vásquez & Edwin Zarrazola & Daya K. Nagar, 2022. "Some Statistical Aspects of the Truncated Multivariate Skew- t Distribution," Mathematics, MDPI, vol. 10(15), pages 1-14, August.
    4. Christian E. Galarza & Tsung-I Lin & Wan-Lun Wang & Víctor H. Lachos, 2021. "On moments of folded and truncated multivariate Student-t distributions based on recurrence relations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(6), pages 825-850, August.
    5. Baishuai Zuo & Chuancun Yin, 2022. "Multivariate doubly truncated moments for generalized skew-elliptical distributions with application to multivariate tail conditional risk measures," Papers 2203.00839, arXiv.org.
    6. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2021. "A formulation for continuous mixtures of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    7. Christopher J. Adcock, 2022. "Properties and Limiting Forms of the Multivariate Extended Skew-Normal and Skew-Student Distributions," Stats, MDPI, vol. 5(1), pages 1-42, March.
    8. Adcock, C.J., 2014. "Mean–variance–skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-Student distribution," European Journal of Operational Research, Elsevier, vol. 234(2), pages 392-401.
    9. Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
    10. C. J. Adcock, 2023. "The Linear Skew-t Distribution and Its Properties," Stats, MDPI, vol. 6(1), pages 1-30, February.
    11. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    12. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    13. Roozegar, Roohollah & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2020. "On moments of doubly truncated multivariate normal mean–variance mixture distributions with application to multivariate tail conditional expectation," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    14. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2017. "Multiple risk measures for multivariate dynamic heavy–tailed models," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 1-32.
    15. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    16. Mehdi Amiri & Yaser Mehrali & Narayanaswamy Balakrishnan & Ahad Jamalizadeh, 2022. "Efficient recursive computational algorithms for multivariate t and multivariate unified skew-t distributions with applications to inference," Computational Statistics, Springer, vol. 37(1), pages 125-158, March.
    17. Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering of multiply censored data via mixtures of t factor analyzers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 22-53, March.
    18. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    19. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    20. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21002062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.