IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v200y2022icp199-217.html
   My bibliography  Save this article

Efficient dependency models: Simulating dependent random variables

Author

Listed:
  • Lamboni, Matieyendou

Abstract

Dependency functions of dependent variables are relevant for (i) performing uncertainty quantification and sensitivity analysis in presence of dependent variables and/or correlated variables, and (ii) simulating random dependent variables. In this paper, we mathematically derive practical dependency functions for classical multivariate distributions such as Dirichlet, elliptical distributions and independent uniform (resp. gamma and Gaussian) variables under constraints that are ready to be used. Since such dependency models are used for sampling random values and we have many dependency models for every joint cumulative distribution function, we provide a way for choosing the efficient sampling function using multivariate sensitivity analysis. We illustrate our approach by means of numerical simulations.

Suggested Citation

  • Lamboni, Matieyendou, 2022. "Efficient dependency models: Simulating dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 199-217.
  • Handle: RePEc:eee:matcom:v:200:y:2022:i:c:p:199-217
    DOI: 10.1016/j.matcom.2022.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422001604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frédéric Vrins, 2018. "Sampling the Multivariate Standard Normal Distribution under a Weighted Sum Constraint," Risks, MDPI, vol. 6(3), pages 1-13, June.
    2. Lamboni, Matieyendou & Monod, Hervé & Makowski, David, 2011. "Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 450-459.
    3. Elja Arjas & Tapani Lehtonen, 1978. "Approximating Many Server Queues by Means of Single Server Queues," Mathematics of Operations Research, INFORMS, vol. 3(3), pages 205-223, August.
    4. Lamboni, Matieyendou, 2019. "Multivariate sensitivity analysis: Minimum variance unbiased estimators of the first-order and total-effect covariance matrices," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 67-92.
    5. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 133-152.
    6. Lamboni, Matieyendou & Kucherenko, Sergei, 2021. "Multivariate sensitivity analysis and derivative-based global sensitivity measures with dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549.
    8. Lamboni, Matieyendou, 2020. "Derivative-based generalized sensitivity indices and Sobol’ indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 236-256.
    9. Rüschendorf, Ludger & de Valk, Vincent, 1993. "On regression representations of stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 46(2), pages 183-198, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamboni, Matieyendou, 2022. "Weak derivative-based expansion of functions: ANOVA and some inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 691-718.
    2. Lamboni, Matieyendou & Kucherenko, Sergei, 2021. "Multivariate sensitivity analysis and derivative-based global sensitivity measures with dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
    4. Matieyendou Lamboni, 2023. "On Exact Distribution for Multivariate Weighted Distributions and Classification," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    5. Matieyendou Lamboni, 2024. "Optimal Estimators of Cross-Partial Derivatives and Surrogates of Functions," Stats, MDPI, vol. 7(3), pages 1-22, July.
    6. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    7. Delis, Manthos & Savva, Christos & Theodossiou, Panayiotis, 2020. "A Coronavirus Asset Pricing Model: The Role of Skewness," MPRA Paper 100877, University Library of Munich, Germany.
    8. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
    9. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    10. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    11. Chotikapanich, Duangkamon & Griffiths, William E, 2002. "Estimating Lorenz Curves Using a Dirichlet Distribution," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 290-295, April.
    12. Heredia, María Belén & Prieur, Clémentine & Eckert, Nicolas, 2022. "Global sensitivity analysis with aggregated Shapley effects, application to avalanche hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. A. B. Atkinson, 2017. "Pareto and the Upper Tail of the Income Distribution in the UK: 1799 to the Present," Economica, London School of Economics and Political Science, vol. 84(334), pages 129-156, April.
    14. Vanesa Jorda & Jos Mar a Sarabia & Markus J ntti, 2020. "Estimation of Income Inequality from Grouped Data," LIS Working papers 804, LIS Cross-National Data Center in Luxembourg.
    15. Harvey, Andrew & Palumbo, Dario, 2023. "Score-driven models for realized volatility," Journal of Econometrics, Elsevier, vol. 237(2).
    16. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    17. Ellina, Polina & Mascarenhas, Briance & Theodossiou, Panayiotis, 2020. "Clarifying managerial biases using a probabilistic framework," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    18. Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.
    19. Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D.S. Prasada & Karunarathne, Wasana, 2014. "Income Distributions, Inequality, and Poverty in Asia, 1992–2010," ADBI Working Papers 468, Asian Development Bank Institute.
    20. Cheikh Mbaye & Frédéric Vrins, 2018. "A Subordinated Cir Intensity Model With Application To Wrong-Way Risk Cva," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:200:y:2022:i:c:p:199-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.