IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v28y2019i2d10.1007_s11749-018-0583-5.html
   My bibliography  Save this article

A stochastic ordering based on the canonical transformation of skew-normal vectors

Author

Listed:
  • Jorge M. Arevalillo

    (University Nacional Educación a Distancia (UNED))

  • Hilario Navarro

    (University Nacional Educación a Distancia (UNED))

Abstract

In this paper, we define a new skewness ordering that enables stochastic comparisons for vectors that follow a multivariate skew-normal distribution. The new ordering is based on the canonical transformation associated with the multivariate skew-normal distribution and on the well-known convex transform order applied to the only skewed component of such canonical transformation. We examine the connection between the proposed ordering and the multivariate convex transform order studied by Belzunce et al. (TEST 24(4):813–834, 2015). Several standard skewness measures like Mardia’s and Malkovich–Afifi’s indices are revisited and interpreted in connection with the new ordering; we also study its relationship with the J-divergence between skew-normal and normal random vectors and with the Negentropy. Some artificial data are used in simulation experiments to illustrate the theoretical discussion; a real data application is provided as well.

Suggested Citation

  • Jorge M. Arevalillo & Hilario Navarro, 2019. "A stochastic ordering based on the canonical transformation of skew-normal vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 475-498, June.
  • Handle: RePEc:spr:testjl:v:28:y:2019:i:2:d:10.1007_s11749-018-0583-5
    DOI: 10.1007/s11749-018-0583-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-018-0583-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-018-0583-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicola Loperfido, 2010. "Canonical transformations of skew-normal variates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 146-165, May.
    2. Balakrishnan, N. & Capitanio, A. & Scarpa, B., 2014. "A test for multivariate skew-normality based on its canonical form," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 19-32.
    3. Arevalillo, Jorge M. & Navarro, Hilario, 2012. "A study of the effect of kurtosis on discriminant analysis under elliptical populations," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 53-63.
    4. Wang, Jin, 2009. "A family of kurtosis orderings for multivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 509-517, March.
    5. Marc Genton & Nicola Loperfido, 2005. "Generalized skew-elliptical distributions and their quadratic forms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(2), pages 389-401, June.
    6. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    7. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    8. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    9. Balakrishnan, N. & Scarpa, Bruno, 2012. "Multivariate measures of skewness for the skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 73-87, February.
    10. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    11. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    12. Christopher Adcock & Martin Eling & Nicola Loperfido, 2015. "Skewed distributions in finance and actuarial science: a review," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1253-1281, November.
    13. Adelchi Azzalini & Giuliana Regoli, 2012. "Some properties of skew-symmetric distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 857-879, August.
    14. A. Capitanio & A. Azzalini & E. Stanghellini, 2003. "Graphical models for skew‐normal variates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 129-144, March.
    15. Arevalillo, Jorge M. & Navarro, Hilario, 2015. "A note on the direction maximizing skewness in multivariate skew-t vectors," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 328-332.
    16. Masanobu Taniguchi & Alexandre Petkovic & Takehiro Kase & Thomas DiCiccio & Anna Clara Monti, 2015. "Robust portfolio estimation under skew-normal return processes," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1091-1112, November.
    17. Loperfido, Nicola, 2013. "Skewness and the linear discriminant function," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 93-99.
    18. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    19. Félix Belzunce & Julio Mulero & José María Ruíz & Alfonso Suárez-Llorens, 2015. "On relative skewness for multivariate distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 813-834, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge M. Arevalillo & Hilario Navarro, 2020. "Data projections by skewness maximization under scale mixtures of skew-normal vectors," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 435-461, June.
    2. Jorge M. Arevalillo & Hilario Navarro, 2021. "Skewness-Kurtosis Model-Based Projection Pursuit with Application to Summarizing Gene Expression Data," Mathematics, MDPI, vol. 9(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge M. Arevalillo & Hilario Navarro, 2021. "Skewness-Kurtosis Model-Based Projection Pursuit with Application to Summarizing Gene Expression Data," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    2. Jorge M. Arevalillo & Hilario Navarro, 2020. "Data projections by skewness maximization under scale mixtures of skew-normal vectors," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 435-461, June.
    3. Shushi, Tomer, 2018. "A proof for the existence of multivariate singular generalized skew-elliptical density functions," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 50-55.
    4. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    5. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    6. Arevalillo, Jorge M. & Navarro, Hilario, 2015. "A note on the direction maximizing skewness in multivariate skew-t vectors," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 328-332.
    7. Loperfido, Nicola, 2018. "Skewness-based projection pursuit: A computational approach," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 42-57.
    8. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    9. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    10. Abe, Toshihiro & Fujisawa, Hironori & Kawashima, Takayuki & Ley, Christophe, 2021. "EM algorithm using overparameterization for the multivariate skew-normal distribution," Econometrics and Statistics, Elsevier, vol. 19(C), pages 151-168.
    11. Antonio Canale & Euloge Clovis Kenne Pagui & Bruno Scarpa, 2016. "Bayesian modeling of university first-year students' grades after placement test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 3015-3029, December.
    12. Nicola Loperfido & Tomer Shushi, 2023. "Optimal Portfolio Projections for Skew-Elliptically Distributed Portfolio Returns," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 143-166, October.
    13. Young, Phil D. & Kahle, David J. & Young, Dean M., 2017. "On the independence of singular multivariate skew-normal sub-vectors," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 58-62.
    14. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & Gyorgy H. Terdik, 2021. "On Multivariate Skewness and Kurtosis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 607-644, August.
    15. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    16. Shushi, Tomer, 2018. "Generalized skew-elliptical distributions are closed under affine transformations," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 1-4.
    17. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    18. Cornelis J. Potgieter & Marc G. Genton, 2013. "Characteristic Function-based Semiparametric Inference for Skew-symmetric Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 471-490, September.
    19. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    20. Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:28:y:2019:i:2:d:10.1007_s11749-018-0583-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.