IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v188y2022ics0047259x21001317.html
   My bibliography  Save this article

An overview of skew distributions in model-based clustering

Author

Listed:
  • Lee, Sharon X.
  • McLachlan, Geoffrey J.

Abstract

The literature on non-normal model-based clustering has continued to grow in recent years. The non-normal models often take the form of a mixture of component densities that offer a high degree of flexibility in distributional shapes. They handle skewness in different ways, most typically by introducing latent ‘skewing’ variable(s), while some other consider marginal transformations of the original variable(s). We provide a selective overview of the main types of skew distributions used in the area, based on their characterization of skewness, and discuss different skew shapes they can produce. For brevity, we focus on the more commonly-used families of distributions.

Suggested Citation

  • Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x21001317
    DOI: 10.1016/j.jmva.2021.104853
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21001317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsen Maleki & Darren Wraith, 2019. "Mixtures of multivariate restricted skew-normal factor analyzer models in a Bayesian framework," Computational Statistics, Springer, vol. 34(3), pages 1039-1053, September.
    2. C. A. Abanto-Valle & V. H. Lachos & Dipak K. Dey, 2015. "Bayesian Estimation of a Skew-Student-t Stochastic Volatility Model," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 721-738, September.
    3. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "Hidden truncation hyperbolic distributions, finite mixtures thereof, and their application for clustering," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 141-156.
    4. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    5. Paula M. Murray & Ryan P. Browne & Paul D. McNicholas, 2020. "Mixtures of Hidden Truncation Hyperbolic Factor Analyzers," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 366-379, July.
    6. Ley, Christophe & Paindaveine, Davy, 2010. "Multivariate skewing mechanisms: A unified perspective based on the transformation approach," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1685-1694, December.
    7. McLachlan, Geoff & Lee, Sharon X, 2013. "EMMIXuskew: An R Package for Fitting Mixtures of Multivariate Skew t Distributions via the EM Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i12).
    8. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2014. "Mixtures of skew-t factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 326-335.
    9. Prates, Marcos Oliveira & Lachos, Victor Hugo & Barbosa Cabral, Celso Rômulo, 2013. "mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i12).
    10. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    11. McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Comment on “On nomenclature, and the relative merits of two formulations of skew distributions” by A. Azzalini, R. Browne, M. Genton, and P. McNicholas," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 1-5.
    12. Arellano-Valle, Reinaldo B. & Ferreira, Clécio S. & Genton, Marc G., 2018. "Scale and shape mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 98-110.
    13. Kollo, Tõnu, 2008. "Multivariate skewness and kurtosis measures with an application in ICA," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2328-2338, November.
    14. Cabral, Celso Rômulo Barbosa & Lachos, Víctor Hugo & Prates, Marcos O., 2012. "Multivariate mixture modeling using skew-normal independent distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 126-142, January.
    15. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2005. "On fundamental skew distributions," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 93-116, September.
    16. Loperfido, Nicola, 2018. "Skewness-based projection pursuit: A computational approach," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 42-57.
    17. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    18. M. C. Jones & Arthur Pewsey, 2009. "Sinh-arcsinh distributions," Biometrika, Biometrika Trust, vol. 96(4), pages 761-780.
    19. M. Vrac & L. Billard & E. Diday & A. Chédin, 2012. "Copula analysis of mixture models," Computational Statistics, Springer, vol. 27(3), pages 427-457, September.
    20. Yana Melnykov & Xuwen Zhu & Volodymyr Melnykov, 2021. "Transformation mixture modeling for skewed data groups with heavy tails and scatter," Computational Statistics, Springer, vol. 36(1), pages 61-78, March.
    21. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    22. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    23. Wraith, Darren & Forbes, Florence, 2015. "Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 61-73.
    24. Sharon Lee & Geoffrey McLachlan, 2013. "Model-based clustering and classification with non-normal mixture distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 427-454, November.
    25. Sharon X. Lee & Tsung-I Lin & Geoffrey J. McLachlan, 2021. "Mixtures of factor analyzers with scale mixtures of fundamental skew normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 481-512, June.
    26. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    27. Hossein Negarestani & Ahad Jamalizadeh & Sobhan Shafiei & Narayanaswamy Balakrishnan, 2019. "Mean mixtures of normal distributions: properties, inference and application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 501-528, May.
    28. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    29. Lee, Sharon X. & McLachlan, Geoffrey J., 2021. "On formulations of skew factor models: Skew factors and/or skew errors," Statistics & Probability Letters, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    2. Chuancun Yin & Jing Yao & Yang Yang, 2024. "Hessian and increasing-Hessian orderings of multivariate skew-elliptical random vectors with applications in actuarial science," Statistical Papers, Springer, vol. 65(7), pages 4715-4744, September.
    3. Chen, Claire Y.T. & Sun, Edward W. & Miao, Wanyu & Lin, Yi-Bing, 2024. "Reconciling business analytics with graphically initialized subspace clustering for optimal nonlinear pricing," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1086-1107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Comment on “On nomenclature, and the relative merits of two formulations of skew distributions” by A. Azzalini, R. Browne, M. Genton, and P. McNicholas," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 1-5.
    2. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    3. Wan-Lun Wang & Tsung-I Lin, 2022. "Robust clustering of multiply censored data via mixtures of t factor analyzers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 22-53, March.
    4. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    5. Mohsen Maleki & Darren Wraith & Reinaldo B. Arellano-Valle, 2019. "A flexible class of parametric distributions for Bayesian linear mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 543-564, June.
    6. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    7. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "A mixture of SDB skew-t factor analyzers," Econometrics and Statistics, Elsevier, vol. 3(C), pages 160-168.
    8. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    9. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    10. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    11. Wan-Lun Wang & Ahad Jamalizadeh & Tsung-I Lin, 2020. "Finite mixtures of multivariate scale-shape mixtures of skew-normal distributions," Statistical Papers, Springer, vol. 61(6), pages 2643-2670, December.
    12. Hashemi, Farzane & Naderi, Mehrdad & Jamalizadeh, Ahad & Bekker, Andriette, 2021. "A flexible factor analysis based on the class of mean-mixture of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    13. Lee, Sharon X. & McLachlan, Geoffrey J., 2021. "On formulations of skew factor models: Skew factors and/or skew errors," Statistics & Probability Letters, Elsevier, vol. 168(C).
    14. Wraith, Darren & Forbes, Florence, 2015. "Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 61-73.
    15. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    16. Paula M. Murray & Ryan P. Browne & Paul D. McNicholas, 2020. "Mixtures of Hidden Truncation Hyperbolic Factor Analyzers," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 366-379, July.
    17. Azzalini, Adelchi & Browne, Ryan P. & Genton, Marc G. & McNicholas, Paul D., 2016. "On nomenclature for, and the relative merits of, two formulations of skew distributions," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 201-206.
    18. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    19. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    20. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "Hidden truncation hyperbolic distributions, finite mixtures thereof, and their application for clustering," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 141-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x21001317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.