IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i10p1361-1373.html
   My bibliography  Save this article

Classification of a screened data into one of two normal populations perturbed by a screening scheme

Author

Listed:
  • Kim, Hea-Jung

Abstract

In normal classification analysis, there may be cases where the population distributions are perturbed by a screening scheme. This paper considers a new classification method for screened data that is obtained from the perturbed normal distributions. Properties of each population distribution is considered and the best region for classifying the screened data is obtained. These developments yield yet another optimal rule for the classification. The rule is studied from several aspects such as a linear approximation, error rates, and estimation of the rule using the EM algorithm. Relationships among these aspects as well as investigation of the rule's performance are also considered. The screened classification ideas are illustrated in detail using numerical examples.

Suggested Citation

  • Kim, Hea-Jung, 2011. "Classification of a screened data into one of two normal populations perturbed by a screening scheme," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1361-1373, November.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:10:p:1361-1373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X11000741
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srivastava, M. S., 1984. "A measure of skewness and kurtosis and a graphical method for assessing multivariate normality," Statistics & Probability Letters, Elsevier, vol. 2(5), pages 263-267, October.
    2. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    3. Kim, Hea-Jung, 2008. "A class of weighted multivariate normal distributions and its properties," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1758-1771, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hea-Jung Kim, 2015. "A best linear threshold classification with scale mixture of skew normal populations," Computational Statistics, Springer, vol. 30(1), pages 1-28, March.
    2. Baillien, Jonas & Gijbels, Irène & Verhasselt, Anneleen, 2023. "A new distance based measure of asymmetry," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    3. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & Gyorgy H. Terdik, 2021. "On Multivariate Skewness and Kurtosis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 607-644, August.
    4. Balakrishnan, N. & Scarpa, Bruno, 2012. "Multivariate measures of skewness for the skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 73-87, February.
    5. Baishuai Zuo & Narayanaswamy Balakrishnan & Chuancun Yin, 2023. "An analysis of multivariate measures of skewness and kurtosis of skew-elliptical distributions," Papers 2311.18176, arXiv.org.
    6. Marco Minozzo & Luca Bagnato, 2021. "A unified skew‐normal geostatistical factor model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    7. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    8. Bernardi, Mauro, 2013. "Risk measures for skew normal mixtures," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1819-1824.
    9. Mitchell, James & Weale, Martin, 2019. "Forecasting with Unknown Unknowns: Censoring and Fat Tails on the Bank of England's Monetary Policy Committee," EMF Research Papers 27, Economic Modelling and Forecasting Group.
    10. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    11. Lachos, Victor H. & Prates, Marcos O. & Dey, Dipak K., 2021. "Heckman selection-t model: Parameter estimation via the EM-algorithm," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    12. Fang, B.Q., 2006. "Sample mean, covariance and T2 statistic of the skew elliptical model," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1675-1690, August.
    13. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    14. Wangli Xu & Yanwen Li & Dawo Song, 2013. "Testing normality in mixed models using a transformation method," Statistical Papers, Springer, vol. 54(1), pages 71-84, February.
    15. Jamalizadeh, A. & Balakrishnan, N., 2010. "Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1412-1427, July.
    16. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    17. David Mayston, 2015. "Analysing the effectiveness of public service producers with endogenous resourcing," Journal of Productivity Analysis, Springer, vol. 44(1), pages 115-126, August.
    18. Nizar Allouch & Arkadi Predtetchinski, 2008. "On the non-emptiness of the fuzzy core," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(2), pages 203-210, June.
    19. Phil D. Young & Joshua D. Patrick & John A. Ramey & Dean M. Young, 2020. "An Alternative Matrix Skew-Normal Random Matrix and Some Properties," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 28-49, February.
    20. Centorrino, Samuele & Pérez-Urdiales, María, 2023. "Maximum likelihood estimation of stochastic frontier models with endogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 82-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:10:p:1361-1373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.