IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i3d10.1007_s00362-019-01145-4.html
   My bibliography  Save this article

A note on a measure of asymmetry

Author

Listed:
  • Andreas Eberl

    (Karlsruher Institut für Technologie (KIT))

  • Bernhard Klar

    (Karlsruher Institut für Technologie (KIT))

Abstract

A recently proposed measure of asymmetry (Patil et al. in Stat Papers 53: 971–985, 2012) is analyzed in detail. Several examples illustrate the peculiar behavior of this measure $$\eta $$ η as a measure of asymmetry or skewness. These findings are supported by theoretical considerations. Specifically, $$\eta $$ η is revealed to be a measure of similarity with the exponential distribution rather than an asymmetry measure. To illustrate this, we consider a related goodness of fit test for exponentiality. Moreover, we show that the partly erratic behavior of $$\eta $$ η also has a negative impact on the estimation of the measure.

Suggested Citation

  • Andreas Eberl & Bernhard Klar, 2021. "A note on a measure of asymmetry," Statistical Papers, Springer, vol. 62(3), pages 1483-1497, June.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:3:d:10.1007_s00362-019-01145-4
    DOI: 10.1007/s00362-019-01145-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-019-01145-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-019-01145-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank Critchley & M. C. Jones, 2008. "Asymmetry and Gradient Asymmetry Functions: Density‐Based Skewness and Kurtosis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 415-437, September.
    2. Jun Zhang & Jing Zhang & Xuehu Zhu & Tao Lu, 2018. "Testing symmetry based on empirical likelihood," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(13), pages 2429-2454, October.
    3. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    4. Norbert Henze & Simos G. Meintanis, 2005. "Recent and classical tests for exponentiality: a partial review with comparisons," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(1), pages 29-45, February.
    5. P. Patil & P. Patil & D. Bagkavos, 2012. "A measure of asymmetry," Statistical Papers, Springer, vol. 53(4), pages 971-985, November.
    6. Christopher Partlett & Prakash Patil, 2017. "Measuring asymmetry and testing symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 429-460, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baillien, Jonas & Gijbels, Irène & Verhasselt, Anneleen, 2023. "A new distance based measure of asymmetry," Journal of Multivariate Analysis, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baillien, Jonas & Gijbels, Irène & Verhasselt, Anneleen, 2023. "A new distance based measure of asymmetry," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    2. Xu, Zhongxiang & Chevapatrakul, Thanaset & Li, Xiafei, 2019. "Return asymmetry and the cross section of stock returns," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 93-110.
    3. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    4. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    5. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    6. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    7. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    8. Grammig, Joachim G. & Peter, Franziska J., 2008. "International price discovery in the presence of market microstructure effects," CFR Working Papers 08-10, University of Cologne, Centre for Financial Research (CFR).
    9. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    10. J. Baixauli & Susana Alvarez, 2012. "Implied Severity Density Estimation: An Extended Semiparametric Method to Compute Credit Value at Risk," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 115-129, August.
    11. Faugeras, Olivier P., 2009. "A quantile-copula approach to conditional density estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2083-2099, October.
    12. Nagler Thomas & Schellhase Christian & Czado Claudia, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    13. Gery Geenens, 2014. "Probit Transformation for Kernel Density Estimation on the Unit Interval," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 346-358, March.
    14. Christopher Partlett & Prakash Patil, 2017. "Measuring asymmetry and testing symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 429-460, April.
    15. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen V.K., 2007. "Nonparametric density estimation for multivariate bounded data," LIDAM Discussion Papers CORE 2007065, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    17. Yasmina Ziane & Nabil Zougab & Smail Adjabi, 2018. "Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data," Computational Statistics, Springer, vol. 33(1), pages 299-318, March.
    18. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    19. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    20. Veredas, David & Rodríguez Poo, Juan M., 2001. "On the (intradaily) seasonality and dynamics of a financial point process: a semiparametric approach," DES - Working Papers. Statistics and Econometrics. WS ws013321, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:3:d:10.1007_s00362-019-01145-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.