Estimation of ordinal pattern probabilities in Gaussian processes with stationary increments
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chstoph Bandt & Faten Shiha, 2007. "Order Patterns in Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 646-665, September.
- Keller, K. & Sinn, M., 2005. "Ordinal analysis of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(1), pages 114-120.
- Coeurjolly, Jean-Francois, 2000. "Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 5(i07).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Weiß, Christian H. & Ruiz Marín, Manuel & Keller, Karsten & Matilla-García, Mariano, 2022. "Non-parametric analysis of serial dependence in time series using ordinal patterns," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Annika Betken & Jannis Buchsteiner & Herold Dehling & Ines Münker & Alexander Schnurr & Jeannette H.C. Woerner, 2021. "Ordinal patterns in long‐range dependent time series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 969-1000, September.
- Eduarda T. C. Chagas & Marcelo Queiroz‐Oliveira & Osvaldo A. Rosso & Heitor S. Ramos & Cristopher G. S. Freitas & Alejandro C. Frery, 2022. "White Noise Test from Ordinal Patterns in the Entropy–Complexity Plane," International Statistical Review, International Statistical Institute, vol. 90(2), pages 374-396, August.
- Alexander Schnurr, 2015. "An Ordinal Pattern Approach to Detect and to Model Leverage Effects and Dependence Structures Between Financial Time Series," Papers 1502.07321, arXiv.org.
- Alexander Schnurr, 2014. "An ordinal pattern approach to detect and to model leverage effects and dependence structures between financial time series," Statistical Papers, Springer, vol. 55(4), pages 919-931, November.
- Christoph Bandt, 2020. "Order patterns, their variation and change points in financial time series and Brownian motion," Statistical Papers, Springer, vol. 61(4), pages 1565-1588, August.
- Christoph Bandt, 2019. "Order patterns, their variation and change points in financial time series and Brownian motion," Papers 1910.09978, arXiv.org.
- Betken, Annika & Dehling, Herold & Nüßgen, Ines & Schnurr, Alexander, 2021. "Ordinal pattern dependence as a multivariate dependence measure," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
- Fernando López & Mariano Matilla-García & Jesús Mur & Manuel Ruiz Marín, 2021. "Statistical Tests of Symbolic Dynamics," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
- Schnurr, Alexander & Fischer, Svenja, 2022. "Generalized ordinal patterns allowing for ties and their applications in hydrology," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zunino, Luciano & Tabak, Benjamin M. & Serinaldi, Francesco & Zanin, Massimiliano & Pérez, Darío G. & Rosso, Osvaldo A., 2011. "Commodity predictability analysis with a permutation information theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 876-890.
- Alexander Schnurr, 2015. "An Ordinal Pattern Approach to Detect and to Model Leverage Effects and Dependence Structures Between Financial Time Series," Papers 1502.07321, arXiv.org.
- Zunino, L. & Pérez, D.G. & Kowalski, A. & Martín, M.T. & Garavaglia, M. & Plastino, A. & Rosso, O.A., 2008. "Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6057-6068.
- Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
- Rosso, Osvaldo A. & Carpi, Laura C. & Saco, Patricia M. & Gómez Ravetti, Martín & Plastino, Angelo & Larrondo, Hilda A., 2012. "Causality and the entropy–complexity plane: Robustness and missing ordinal patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 42-55.
- Annika Betken & Jannis Buchsteiner & Herold Dehling & Ines Münker & Alexander Schnurr & Jeannette H.C. Woerner, 2021. "Ordinal patterns in long‐range dependent time series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 969-1000, September.
- Ji, Aiwen & Shang, Pengjian, 2019. "Analysis of financial time series through forbidden patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
- Miguel Henry & George Judge, 2019. "Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series," Econometrics, MDPI, vol. 7(1), pages 1-16, March.
- Tan, Zhengxun & Liu, Juan & Chen, Juanjuan, 2021. "Detecting stock market turning points using wavelet leaders method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
- Schnurr, Alexander & Fischer, Svenja, 2022. "Generalized ordinal patterns allowing for ties and their applications in hydrology," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
- John-Fritz Thony & Jean Vaillant, 2022. "Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
- Marco Dozzi & Yuliya Mishura & Georgiy Shevchenko, 2015. "Asymptotic behavior of mixed power variations and statistical estimation in mixed models," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 151-175, July.
- Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
- Montani, Fernando & Deleglise, Emilia B. & Rosso, Osvaldo A., 2014. "Efficiency characterization of a large neuronal network: A causal information approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 58-70.
- Marina Resta & Davide Sciutti, 2003. "Spot price dynamics in deregulated power markets," Econometrics 0312002, University Library of Munich, Germany.
- Jean-Christophe Breton & Jean-François Coeurjolly, 2012. "Confidence intervals for the Hurst parameter of a fractional Brownian motion based on finite sample size," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 1-26, April.
- Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.
- Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M. & Neto, Jusie S.P., 2021. "Macroeconophysics indicator of economic efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
- Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
- Kozachenko Yuriy & Pashko Anatolii & Vasylyk Olga, 2018. "Simulation of generalized fractional Brownian motion in C([0,T])," Monte Carlo Methods and Applications, De Gruyter, vol. 24(3), pages 179-192, September.
More about this item
Keywords
Time series Ordinal pattern Estimation Permutation entropy Hurst parameter;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1781-1790. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.