IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v48y2021i3p969-1000.html
   My bibliography  Save this article

Ordinal patterns in long‐range dependent time series

Author

Listed:
  • Annika Betken
  • Jannis Buchsteiner
  • Herold Dehling
  • Ines Münker
  • Alexander Schnurr
  • Jeannette H.C. Woerner

Abstract

We analyze the ordinal structure of long‐range dependent time series. To this end, we use so called ordinal patterns which describe the relative position of consecutive data points. We provide two estimators for the probabilities of ordinal patterns and prove limit theorems in different settings, namely stationarity and (less restrictive) stationary increments. In the second setting, we encounter a Rosenblatt distribution in the limit. We prove more general limit theorems for functions with Hermite rank 1 and 2. We derive the limit distribution for an estimation of the Hurst parameter H if it is higher than 3/4. Thus, our theorems complement results for lower values of H which can be found in the literature. Finally, we provide some simulations that illustrate our theoretical results.

Suggested Citation

  • Annika Betken & Jannis Buchsteiner & Herold Dehling & Ines Münker & Alexander Schnurr & Jeannette H.C. Woerner, 2021. "Ordinal patterns in long‐range dependent time series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 969-1000, September.
  • Handle: RePEc:bla:scjsta:v:48:y:2021:i:3:p:969-1000
    DOI: 10.1111/sjos.12478
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12478
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    2. Chstoph Bandt & Faten Shiha, 2007. "Order Patterns in Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 646-665, September.
    3. Alexander Schnurr & Herold Dehling, 2017. "Testing for Structural Breaks via Ordinal Pattern Dependence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 706-720, April.
    4. Marc Henry, 2001. "Robust Automatic Bandwidth for Long Memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(3), pages 293-316, May.
    5. Jean-François Coeurjolly, 2001. "Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths," Statistical Inference for Stochastic Processes, Springer, vol. 4(2), pages 199-227, May.
    6. Sinn, Mathieu & Keller, Karsten, 2011. "Estimation of ordinal pattern probabilities in Gaussian processes with stationary increments," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1781-1790, April.
    7. Alexander Schnurr, 2014. "An ordinal pattern approach to detect and to model leverage effects and dependence structures between financial time series," Statistical Papers, Springer, vol. 55(4), pages 919-931, November.
    8. Keller, K. & Sinn, M., 2005. "Ordinal analysis of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(1), pages 114-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schnurr, Alexander & Fischer, Svenja, 2022. "Generalized ordinal patterns allowing for ties and their applications in hydrology," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    2. Christoph Bandt, 2019. "Order patterns, their variation and change points in financial time series and Brownian motion," Papers 1910.09978, arXiv.org.
    3. Betken, Annika & Dehling, Herold & Nüßgen, Ines & Schnurr, Alexander, 2021. "Ordinal pattern dependence as a multivariate dependence measure," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    4. Christoph Bandt, 2020. "Order patterns, their variation and change points in financial time series and Brownian motion," Statistical Papers, Springer, vol. 61(4), pages 1565-1588, August.
    5. Fernando López & Mariano Matilla-García & Jesús Mur & Manuel Ruiz Marín, 2021. "Statistical Tests of Symbolic Dynamics," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
    6. Alexander Schnurr, 2015. "An Ordinal Pattern Approach to Detect and to Model Leverage Effects and Dependence Structures Between Financial Time Series," Papers 1502.07321, arXiv.org.
    7. repec:hum:wpaper:sfb649dp2009-029 is not listed on IDEAS
    8. Silbernagel, Angelika & Schnurr, Alexander, 2024. "Ordinal pattern dependence and multivariate measures of dependence," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    9. Claudio Morana & Andrea Beltratti, 2006. "Structural breaks and common factors in the volatility of the Fama-French factor portfolios," Applied Financial Economics, Taylor & Francis Journals, vol. 16(14), pages 1059-1073.
    10. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    11. Busch Ulrike & Nautz Dieter, 2010. "Controllability and Persistence of Money Market Rates along the Yield Curve: Evidence from the Euro Area," German Economic Review, De Gruyter, vol. 11(3), pages 367-380, August.
    12. Zied Ftiti & Slim Chaouachi, 2018. "What Can We Learn About the Real Exchange Rate Behavior in the Case of a Peripheral Country?," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(3), pages 681-707, September.
    13. Weiß, Christian H. & Ruiz Marín, Manuel & Keller, Karsten & Matilla-García, Mariano, 2022. "Non-parametric analysis of serial dependence in time series using ordinal patterns," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    14. Sinn, Mathieu & Keller, Karsten, 2011. "Estimation of ordinal pattern probabilities in Gaussian processes with stationary increments," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1781-1790, April.
    15. Zunino, L. & Pérez, D.G. & Kowalski, A. & Martín, M.T. & Garavaglia, M. & Plastino, A. & Rosso, O.A., 2008. "Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6057-6068.
    16. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    17. Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    18. Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.
    19. Rosso, Osvaldo A. & Carpi, Laura C. & Saco, Patricia M. & Gómez Ravetti, Martín & Plastino, Angelo & Larrondo, Hilda A., 2012. "Causality and the entropy–complexity plane: Robustness and missing ordinal patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 42-55.
    20. Frezza, Massimiliano, 2012. "Modeling the time-changing dependence in stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 45(12), pages 1510-1520.
    21. Zunino, Luciano & Tabak, Benjamin M. & Serinaldi, Francesco & Zanin, Massimiliano & Pérez, Darío G. & Rosso, Osvaldo A., 2011. "Commodity predictability analysis with a permutation information theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 876-890.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:48:y:2021:i:3:p:969-1000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.