Halfspace depth for general measures: the ray basis theorem and its consequences
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-021-01259-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Jin, 2019. "Asymptotics of generalized depth-based spread processes and applications," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 363-380.
- repec:hal:spmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
- Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014.
"Monge-Kantorovich Depth, Quantiles, Ranks, and Signs,"
Papers
1412.8434, arXiv.org, revised Sep 2015.
- Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2017. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," SciencePo Working papers Main hal-03391975, HAL.
- Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2015. "Monge-Kantorovich Depth, Quantiles, Ranks and Signs," Working Papers ECARES ECARES 2015-02, ULB -- Universite Libre de Bruxelles.
- Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2015. "Monge-Kantorovich depth, quantiles, ranks and signs," CeMMAP working papers CWP57/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2015. "Monge-Kantorovich depth, quantiles, ranks and signs," CeMMAP working papers CWP04/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2015. "Monge-Kantorovich depth, quantiles, ranks and signs," CeMMAP working papers 04/15, Institute for Fiscal Studies.
- Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2015. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," SciencePo Working papers Main hal-03460056, HAL.
- Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2015. "Monge-Kantorovich depth, quantiles, ranks and signs," CeMMAP working papers 57/15, Institute for Fiscal Studies.
- Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2015. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Working Papers hal-03460056, HAL.
- Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2017. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Post-Print hal-03391975, HAL.
- Masse, J. C. & Theodorescu, R., 1994. "Halfplane Trimming for Bivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 48(2), pages 188-202, February.
- Nolan, D., 1992. "Asymptotics for multivariate trimming," Stochastic Processes and their Applications, Elsevier, vol. 42(1), pages 157-169, August.
- Struyf, Anja J. & Rousseeuw, Peter J., 1999. "Halfspace Depth and Regression Depth Characterize the Empirical Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 135-153, April.
- Laketa, Petra & Nagy, Stanislav, 2021. "Reconstruction of atomic measures from their halfspace depth," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
- Kim, Jeankyung, 2000. "Rate of convergence of depth contours: with application to a multivariate metrically trimmed mean," Statistics & Probability Letters, Elsevier, vol. 49(4), pages 393-400, October.
- Mizera, Ivan & Volauf, Milos, 2002. "Continuity of Halfspace Depth Contours and Maximum Depth Estimators: Diagnostics of Depth-Related Methods," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 365-388, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
- Kong, Linglong & Zuo, Yijun, 2010. "Smooth depth contours characterize the underlying distribution," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2222-2226, October.
- Averous, Jean & Meste, Michel, 1997. "Median Balls: An Extension of the Interquantile Intervals to Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 63(2), pages 222-241, November.
- Hassairi, Abdelhamid & Regaieg, Ons, 2008. "On the Tukey depth of a continuous probability distribution," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2308-2313, October.
- Giorgi, Emanuele & McNeil, Alexander J., 2016. "On the computation of multivariate scenario sets for the skew-t and generalized hyperbolic families," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 205-220.
- Koshevoy, Gleb A., 2002. "The Tukey Depth Characterizes the Atomic Measure," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 360-364, November.
- Belzunce, F. & Castano, A. & Olvera-Cervantes, A. & Suarez-Llorens, A., 2007. "Quantile curves and dependence structure for bivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5112-5129, June.
- Hamel, Andreas H. & Kostner, Daniel, 2018. "Cone distribution functions and quantiles for multivariate random variables," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 97-113.
- Romanazzi, Mario, 2001. "Influence Function of Halfspace Depth," Journal of Multivariate Analysis, Elsevier, vol. 77(1), pages 138-161, April.
- McNeil, Alexander J. & Smith, Andrew D., 2012. "Multivariate stress scenarios and solvency," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 299-308.
- Laketa, Petra & Nagy, Stanislav, 2021. "Reconstruction of atomic measures from their halfspace depth," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
- María Edo & Walter Sosa Escudero & Marcela Svarc, 2021. "A multidimensional approach to measuring the middle class," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(1), pages 139-162, March.
- Hwang, Jinsoo & Jorn, Hongsuk & Kim, Jeankyung, 2004. "On the performance of bivariate robust location estimators under contamination," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 587-601, January.
- Gather, Ursula & Fried, Roland & Lanius, Vivian, 2005. "Robust detail-preserving signal extraction," Technical Reports 2005,54, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- M. Hallin & D. La Vecchia & H. Liu, 2022.
"Center-Outward R-Estimation for Semiparametric VARMA Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 925-938, April.
- Marc Hallin & Davide La Vecchia & H Liu, 2019. "Center-Outward R-Estimation for Semiparametric VARMA Models," Working Papers ECARES 2019-25, ULB -- Universite Libre de Bruxelles.
- Barme-Delcroix, Marie-Francoise & Gather, Ursula, 2007. "Limit laws for multidimensional extremes," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1750-1755, December.
- Hongjian Shi & Mathias Drton & Marc Hallin & Fang Han, 2023. "Semiparametrically Efficient Tests of Multivariate Independence Using Center-Outward Quadrant, Spearman, and Kendall Statistics," Working Papers ECARES 2023-03, ULB -- Universite Libre de Bruxelles.
- Jonas Baillien & Irène Gijbels & Anneleen Verhasselt, 2023. "Flexible asymmetric multivariate distributions based on two-piece univariate distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 159-200, February.
- Zuo, Yijun, 2021. "Computation of projection regression depth and its induced median," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Marc Hallin & Daniel Hlubinka & Šárka Hudecová, 2023.
"Efficient Fully Distribution-Free Center-Outward Rank Tests for Multiple-Output Regression and MANOVA,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(543), pages 1923-1939, July.
- Marc Hallin & Daniel Hlubinka & Sarka Hudecova, 2021. "Efficient Fully Distribution-Free Center-Outward Rank Tests for Multiple-Output Regression and MANOVA," Working Papers ECARES 2021-13, ULB -- Universite Libre de Bruxelles.
More about this item
Keywords
Halfspace depth; Tukey depth; Multivariate median; Ray basis theorem; Floating body;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:63:y:2022:i:3:d:10.1007_s00362-021-01259-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.