IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2677-d662221.html
   My bibliography  Save this article

A Method to Automate the Prediction of Student Academic Performance from Early Stages of the Course

Author

Listed:
  • Alicia Nieto-Reyes

    (Department of Mathematics, Statistics and Computer Science, University of Cantabria, 39005 Santander, Spain)

  • Rafael Duque

    (Department of Mathematics, Statistics and Computer Science, University of Cantabria, 39005 Santander, Spain)

  • Giacomo Francisci

    (Department of Mathematics, University of Trento, 38122 Trento, Italy)

Abstract

The objective of this work is to present a methodology that automates the prediction of students’ academic performance at the end of the course using data recorded in the first tasks of the academic year. Analyzing early student records is helpful in predicting their later results; which is useful, for instance, for an early intervention. With this aim, we propose a methodology based on the random Tukey depth and a non-parametric kernel. This methodology allows teachers and evaluators to define the variables that they consider most appropriate to measure those aspects related to the academic performance of students. The methodology is applied to a real case study obtaining a success rate in the predictions of over the 80%. The case study was carried out in the field of Human-computer Interaction.The results indicate that the methodology could be of special interest to develop software systems that process the data generated by computer-supported learning systems and to warn the teacher of the need to adopt intervention mechanisms when low academic performance is predicted.

Suggested Citation

  • Alicia Nieto-Reyes & Rafael Duque & Giacomo Francisci, 2021. "A Method to Automate the Prediction of Student Academic Performance from Early Stages of the Course," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2677-:d:662221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    2. Cuesta-Albertos, J.A. & Nieto-Reyes, A., 2008. "The random Tukey depth," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4979-4988, July.
    3. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    4. Anders I. MØrch & Silje Jondahl & Jan A. Dolonen, 2005. "Supporting Conceptual Awareness with Pedagogical Agents," Information Systems Frontiers, Springer, vol. 7(1), pages 39-53, February.
    5. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    6. Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust multivariate estimation based on statistical depth filters," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 935-959, December.
    7. Cuesta-Albertos, J.A. & Nieto-Reyes, A., 2008. "The Tukey and the random Tukey depths characterize discrete distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2304-2311, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmen Lacave & Ana Isabel Molina, 2023. "Advances in Artificial Intelligence and Statistical Techniques with Applications to Health and Education," Mathematics, MDPI, vol. 11(6), pages 1-4, March.
    2. Luis González-De La Fuente & Alicia Nieto-Reyes & Pedro Terán, 2022. "Properties of Statistical Depth with Respect to Compact Convex Random Sets: The Tukey Depth," Mathematics, MDPI, vol. 10(15), pages 1-23, August.
    3. Marina Segura & Jorge Mello & Adolfo Hernández, 2022. "Machine Learning Prediction of University Student Dropout: Does Preference Play a Key Role?," Mathematics, MDPI, vol. 10(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    2. Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
    3. Zhang, Xu & Tian, Yahui & Guan, Guoyu & Gel, Yulia R., 2021. "Depth-based classification for relational data with multiple attributes," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    4. Luis González-De La Fuente & Alicia Nieto-Reyes & Pedro Terán, 2022. "Properties of Statistical Depth with Respect to Compact Convex Random Sets: The Tukey Depth," Mathematics, MDPI, vol. 10(15), pages 1-23, August.
    5. Lucas Fernandez-Piana & Marcela Svarc, 2022. "An integrated local depth measure," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 175-197, June.
    6. Olusola Samuel Makinde, 2019. "Classification rules based on distribution functions of functional depth," Statistical Papers, Springer, vol. 60(3), pages 629-640, June.
    7. Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast DD-classification of functional data," Statistical Papers, Springer, vol. 58(4), pages 1055-1089, December.
    8. Wei Shao & Yijun Zuo, 2020. "Computing the halfspace depth with multiple try algorithm and simulated annealing algorithm," Computational Statistics, Springer, vol. 35(1), pages 203-226, March.
    9. Dyckerhoff, Rainer & Mozharovskyi, Pavlo & Nagy, Stanislav, 2021. "Approximate computation of projection depths," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    10. Alicia Nieto-Reyes & Heather Battey & Giacomo Francisci, 2021. "Functional Symmetry and Statistical Depth for the Analysis of Movement Patterns in Alzheimer’s Patients," Mathematics, MDPI, vol. 9(8), pages 1-17, April.
    11. Tian, Yahui & Gel, Yulia R., 2019. "Fusing data depth with complex networks: Community detection with prior information," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 99-116.
    12. Tian, Tian Siva & James, Gareth M., 2013. "Interpretable dimension reduction for classifying functional data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 282-296.
    13. Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust multivariate estimation based on statistical depth filters," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 935-959, December.
    14. Laketa, Petra & Nagy, Stanislav, 2021. "Reconstruction of atomic measures from their halfspace depth," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    15. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    16. Stanislav Nagy, 2021. "Halfspace depth does not characterize probability distributions," Statistical Papers, Springer, vol. 62(3), pages 1135-1139, June.
    17. Hongxiao Zhu & Philip J. Brown & Jeffrey S. Morris, 2012. "Robust Classification of Functional and Quantitative Image Data Using Functional Mixed Models," Biometrics, The International Biometric Society, vol. 68(4), pages 1260-1268, December.
    18. Mojirsheibani, Majid & Shaw, Crystal, 2018. "Classification with incomplete functional covariates," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 40-46.
    19. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    20. repec:cte:wsrepe:24606 is not listed on IDEAS
    21. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2677-:d:662221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.