Higher order tail densities of copulas and hidden regular variation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2014.12.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
- Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
- Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.
- de Haan, L. & Omey, E., 1984. "Integrals and derivatives of regularly varying functions in d and domains of attraction of stable distributions II," Stochastic Processes and their Applications, Elsevier, vol. 16(2), pages 157-170, February.
- Hua, Lei & Joe, Harry, 2012. "Tail Comonotonicity and Conservative Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 42(2), pages 601-629, November.
- Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
- de Haan, L. & Resnick, S., 1987. "On regular variation of probability densities," Stochastic Processes and their Applications, Elsevier, vol. 25, pages 83-93.
- Hua, Lei, 2015. "Tail negative dependence and its applications for aggregate loss modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 135-145.
- Li, Haijun, 2009. "Orthant tail dependence of multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 243-256, January.
- Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Takaaki Koike & Marius Hofert, 2020. "Modality for Scenario Analysis and Maximum Likelihood Allocation," Papers 2005.02950, arXiv.org, revised Nov 2020.
- Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
- Haijun Li, 2018. "Operator Tail Dependence of Copulas," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 1013-1027, September.
- Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
- Das, Bikramjit & Fasen-Hartmann, Vicky, 2024. "On heavy-tailed risks under Gaussian copula: The effects of marginal transformation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Lei Hua, 2016. "A Note on Upper Tail Behavior of Liouville Copulas," Risks, MDPI, vol. 4(4), pages 1-10, November.
- Hua, Lei, 2017. "On a bivariate copula with both upper and lower full-range tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 94-104.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
- Haijun Li, 2018. "Operator Tail Dependence of Copulas," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 1013-1027, September.
- Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
- Das, Bikramjit & Fasen-Hartmann, Vicky, 2024. "On heavy-tailed risks under Gaussian copula: The effects of marginal transformation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
- Su, Jianxi & Hua, Lei, 2017. "A general approach to full-range tail dependence copulas," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 49-64.
- Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
- Lei Hua, 2016. "A Note on Upper Tail Behavior of Liouville Copulas," Risks, MDPI, vol. 4(4), pages 1-10, November.
- Bikramjit Das & Vicky Fasen-Hartmann, 2023. "On heavy-tailed risks under Gaussian copula: the effects of marginal transformation," Papers 2304.05004, arXiv.org.
- Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
- Jaworski Piotr, 2017. "On Conditional Value at Risk (CoVaR) for tail-dependent copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 1-19, January.
- Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
- Joe, Harry & Sang, Peijun, 2016. "Multivariate models for dependent clusters of variables with conditional independence given aggregation variables," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 114-132.
- Hua, Lei, 2015. "Tail negative dependence and its applications for aggregate loss modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 135-145.
- Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
- Pavel Krupskii & Harry Joe, 2015. "Tail-weighted measures of dependence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 614-629, March.
- Hua, Lei, 2017. "On a bivariate copula with both upper and lower full-range tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 94-104.
- Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
- Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.
- Padoan, Simone A., 2011. "Multivariate extreme models based on underlying skew-t and skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 977-991, May.
More about this item
Keywords
Multivariate regular variation; Tail dependence; Upper exponent function; Tail order function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:138:y:2015:i:c:p:143-155. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.