Multivariate dependence modeling based on comonotonic factors
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2017.01.008
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
- Dong Hwan Oh & Andrew J. Patton, 2017.
"Modeling Dependence in High Dimensions With Factor Copulas,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
- Dong Hwan Oh & Andrew J. Patton, 2015. "Modelling Dependence in High Dimensions with Factor Copulas," Finance and Economics Discussion Series 2015-51, Board of Governors of the Federal Reserve System (U.S.).
- Joe, Harry & Sang, Peijun, 2016. "Multivariate models for dependent clusters of variables with conditional independence given aggregation variables," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 114-132.
- Karl Holzinger & Frances Swineford, 1937. "The Bi-factor method," Psychometrika, Springer;The Psychometric Society, vol. 2(1), pages 41-54, March.
- Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
- Anastasios Panagiotelis & Claudia Czado & Harry Joe, 2012. "Pair Copula Constructions for Multivariate Discrete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1063-1072, September.
- Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
- Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
- Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
- Hua, Lei, 2015. "Tail negative dependence and its applications for aggregate loss modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 135-145.
- Xiaolin Luo & Pavel V. Shevchenko, 2007. "The t copula with Multiple Parameters of Degrees of Freedom: Bivariate Characteristics and Application to Risk Management," Papers 0710.3959, arXiv.org, revised Feb 2010.
- Xiaolin Luo & Pavel Shevchenko, 2010. "The t copula with multiple parameters of degrees of freedom: bivariate characteristics and application to risk management," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 1039-1054.
- McNeil, Alexander J. & Neslehová, Johanna, 2010. "From Archimedean to Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1772-1790, September.
- Yang, Xipei & Frees, Edward W. & Zhang, Zhengjun, 2011. "A generalized beta copula with applications in modeling multivariate long-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 265-284, September.
- Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
- Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hua, Lei & Polansky, Alan & Pramanik, Paramahansa, 2019. "Assessing bivariate tail non-exchangeable dependence," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
- Paramahansa Pramanik, 2024. "Dependence on Tail Copula," J, MDPI, vol. 7(2), pages 1-26, April.
- Perreault, Samuel & Duchesne, Thierry & Nešlehová, Johanna G., 2019. "Detection of block-exchangeable structure in large-scale correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 400-422.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ackerer Damien & Vatter Thibault, 2017. "Dependent defaults and losses with factor copula models," Dependence Modeling, De Gruyter, vol. 5(1), pages 375-399, December.
- Su, Jianxi & Hua, Lei, 2017. "A general approach to full-range tail dependence copulas," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 49-64.
- Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
- Hua, Lei, 2017. "On a bivariate copula with both upper and lower full-range tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 94-104.
- Nguyen, Hoang & Ausín, M. Concepción & Galeano, Pedro, 2020. "Variational inference for high dimensional structured factor copulas," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
- Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.
- Takaaki Koike & Liyuan Lin & Ruodu Wang, 2022. "Joint mixability and notions of negative dependence," Papers 2204.11438, arXiv.org, revised Jan 2024.
- Krupskii, Pavel & Joe, Harry, 2020. "Flexible copula models with dynamic dependence and application to financial data," Econometrics and Statistics, Elsevier, vol. 16(C), pages 148-167.
- Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
- Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
- Zheng Wei & Seongyong Kim & Boseung Choi & Daeyoung Kim, 2019. "Multivariate Skew Normal Copula for Asymmetric Dependence: Estimation and Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 365-387, January.
- Damien Ackerer & Thibault Vatter, 2016. "Dependent Defaults and Losses with Factor Copula Models," Papers 1610.03050, arXiv.org, revised Jan 2018.
- Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
- Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
- Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.
- Hua, Lei, 2015. "Tail negative dependence and its applications for aggregate loss modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 135-145.
- Pavel Krupskii & Harry Joe, 2015. "Tail-weighted measures of dependence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 614-629, March.
- Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
- Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
- Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
More about this item
Keywords
Bi-factor; Copula; Dependence clusters/groups; Laplace Transform; Parsimonious dependence models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:155:y:2017:i:c:p:317-333. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.