IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i8p1772-1790.html
   My bibliography  Save this article

From Archimedean to Liouville copulas

Author

Listed:
  • McNeil, Alexander J.
  • Neslehová, Johanna

Abstract

We use a recent characterization of the d-dimensional Archimedean copulas as the survival copulas of d-dimensional simplex distributions (McNeil and Neslehová (2009) [1]) to construct new Archimedean copula families, and to examine the relationship between their dependence properties and the radial parts of the corresponding simplex distributions. In particular, a new formula for Kendall's tau is derived and a new dependence ordering for non-negative random variables is introduced which generalises the Laplace transform order. We then generalise the Archimedean copulas to obtain Liouville copulas, which are the survival copulas of Liouville distributions and which are non-exchangeable in general. We derive a formula for Kendall's tau of Liouville copulas in terms of the radial parts of the corresponding Liouville distributions.

Suggested Citation

  • McNeil, Alexander J. & Neslehová, Johanna, 2010. "From Archimedean to Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1772-1790, September.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:8:p:1772-1790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00074-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Kai-Tai & Fang, Bi-Qi, 1988. "Some families of mutivariate symmetric distributions related to exponential distribution," Journal of Multivariate Analysis, Elsevier, vol. 24(1), pages 109-122, January.
    2. Joe, Harry, 1993. "Multivariate dependence measures and data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 16(3), pages 279-297, September.
    3. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
    4. Hofert, Marius, 2008. "Sampling Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5163-5174, August.
    5. Gupta, Rameshwar D. & Richards, Donald St.P., 1987. "Multivariate Liouville distributions," Journal of Multivariate Analysis, Elsevier, vol. 23(2), pages 233-256, December.
    6. Gupta, Rameshwar D. & Richards, Donald St. P., 1992. "Multivariate Liouville distributions, III," Journal of Multivariate Analysis, Elsevier, vol. 43(1), pages 29-57, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ongaro, A. & Migliorati, S., 2013. "A generalization of the Dirichlet distribution," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 412-426.
    2. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.
    3. Belzile, Léo R. & Nešlehová, Johanna G., 2017. "Extremal attractors of Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 68-92.
    4. Bhattacharya, P. K. & Burman, Prabir, 1998. "Semiparametric Estimation in the Multivariate Liouville Model," Journal of Multivariate Analysis, Elsevier, vol. 65(1), pages 1-18, April.
    5. Elena Di Bernardino & Didier Rullière, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Working Papers hal-01147778, HAL.
    6. Cooray Kahadawala, 2018. "Strictly Archimedean copulas with complete association for multivariate dependence based on the Clayton family," Dependence Modeling, De Gruyter, vol. 6(1), pages 1-18, February.
    7. Edward Hoyle & Levent Ali Menguturk, 2020. "Generalised Liouville Processes and their Properties," Papers 2003.11312, arXiv.org, revised May 2020.
    8. Tian, Guo-Liang & Tang, Man-Lai & Yuen, Kam Chuen & Ng, Kai Wang, 2010. "Further properties and new applications of the nested Dirichlet distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 394-405, February.
    9. Hélène Cossette & Etienne Marceau & Quang Huy Nguyen & Christian Y. Robert, 2019. "Tail Approximations for Sums of Dependent Regularly Varying Random Variables Under Archimedean Copula Models," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 461-490, June.
    10. Yanqin Fan & Marc Henry, 2020. "Vector copulas," Papers 2009.06558, arXiv.org, revised Apr 2021.
    11. Ng, Kai Wang & Tang, Man-Lai & Tan, Ming & Tian, Guo-Liang, 2008. "Grouped Dirichlet distribution: A new tool for incomplete categorical data analysis," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 490-509, March.
    12. Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.
    13. Ho-Yin Mak & Zuo-Jun Max Shen, 2014. "Pooling and Dependence of Demand and Yield in Multiple-Location Inventory Systems," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 263-269, May.
    14. Saminger-Platz Susanne & Kolesárová Anna & Šeliga Adam & Mesiar Radko & Klement Erich Peter, 2024. "On comprehensive families of copulas involving the three basic copulas and transformations thereof," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    15. repec:hum:wpaper:sfb649dp2009-014 is not listed on IDEAS
    16. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    17. Jones, M.C. & Marchand, Éric, 2019. "Multivariate discrete distributions via sums and shares," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 83-93.
    18. Koen Decancq, 2014. "Copula-based measurement of dependence between dimensions of well-being," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 681-701.
    19. Grothe, Oliver & Schnieders, Julius & Segers, Johan, 2013. "Measuring Association and Dependence Between Random Vectors," LIDAM Discussion Papers ISBA 2013026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Deng, Wenli & Wang, Jinglong & Zhang, Riquan, 2022. "Measures of concordance and testing of independence in multivariate structure," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    21. Jeguirim, Khaled & Ben Salem, Leila, 2024. "Unveiling extreme dependencies between oil price shocks and inflation in Tunisia: Insights from a copula dcc garch approach," MPRA Paper 121616, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:8:p:1772-1790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.