IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v108y2023icp107-128.html
   My bibliography  Save this article

Probability equivalent level of Value at Risk and higher-order Expected Shortfalls

Author

Listed:
  • Barczy, Mátyás
  • K. Nedényi, Fanni
  • Sütő, László

Abstract

We investigate the probability equivalent level of Value at Risk and nth-order Expected Shortfall (called PELVEn), which can be considered as a variant of the notion of the probability equivalent level of Value at Risk and Expected Shortfall (called PELVE) due to Li and Wang (2022). We study the finiteness, uniqueness and several properties of PELVEn, we calculate PELVEn of some notable distributions, PELVE2 of a random variable having generalized Pareto excess distribution, and we describe the asymptotic behaviour of PELVE2 of regularly varying distributions as the level tends to 0. Some properties of nth-order Expected Shortfall are also investigated. Among others, it turns out that the Gini Shortfall at some level p∈[0,1) corresponding to a (loading) parameter λ⩾0 is the linear combination of the Expected Shortfall at level p and the 2nd-order Expected Shortfall at level p with coefficients 1−2λ and 2λ, respectively.

Suggested Citation

  • Barczy, Mátyás & K. Nedényi, Fanni & Sütő, László, 2023. "Probability equivalent level of Value at Risk and higher-order Expected Shortfalls," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 107-128.
  • Handle: RePEc:eee:insuma:v:108:y:2023:i:c:p:107-128
    DOI: 10.1016/j.insmatheco.2022.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668722001226
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2022.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Embrechts & Marius Hofert, 2013. "A note on generalized inverses," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 423-432, June.
    2. Wang, Qiuqi & Wang, Ruodu & Wei, Yunran, 2020. "Distortion Riskmetrics On General Spaces," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 827-851, September.
    3. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    4. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    5. Carlo Acerbi, 2007. "Coherent measures of risk in everyday market practice," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 359-364.
    6. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    7. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    8. Sebastian Fuchs & Ruben Schlotter & Klaus D. Schmidt, 2017. "A Review and Some Complements on Quantile Risk Measures and Their Domain," Risks, MDPI, vol. 5(4), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ortega-Jiménez, Patricia & Pellerey, Franco & Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2024. "Probability equivalent level for CoVaR and VaR," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 22-35.
    2. Zou, Zhenfeng & Hu, Taizhong, 2024. "Adjusted higher-order expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 1-12.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matyas Barczy & Fanni K. Ned'enyi & L'aszl'o SutH{o}, 2022. "Probability equivalent level of Value at Risk and higher-order Expected Shortfalls," Papers 2202.09770, arXiv.org, revised Nov 2022.
    2. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    3. Yuyu Chen & Liyuan Lin & Ruodu Wang, 2021. "Risk Aggregation under Dependence Uncertainty and an Order Constraint," Papers 2104.07718, arXiv.org, revised Oct 2021.
    4. Ruodu Wang & Ricardas Zitikis, 2018. "Weak comonotonicity," Papers 1812.04827, arXiv.org, revised Sep 2019.
    5. Wang, Ruodu & Zitikis, Ričardas, 2020. "Weak comonotonicity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 386-397.
    6. Chen, Yuyu & Lin, Liyuan & Wang, Ruodu, 2022. "Risk aggregation under dependence uncertainty and an order constraint," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 169-187.
    7. Cai, Jun & Wang, Ying, 2021. "Optimal capital allocation principles considering capital shortfall and surplus risks in a hierarchical corporate structure," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 329-349.
    8. Embrechts Paul & Wang Ruodu, 2015. "Seven Proofs for the Subadditivity of Expected Shortfall," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-15, October.
    9. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    10. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Copulas and related properties," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 109-121.
    11. Di Lascio, F. Marta L. & Giammusso, Davide & Puccetti, Giovanni, 2018. "A clustering approach and a rule of thumb for risk aggregation," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 236-248.
    12. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    13. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.
    14. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    15. Yichun Chi & Zuo Quan Xu & Sheng Chao Zhuang, 2022. "Distributionally Robust Goal-Reaching Optimization in the Presence of Background Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(3), pages 351-382, August.
    16. Hu, Taizhong & Chen, Ouxiang, 2020. "On a family of coherent measures of variability," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 173-182.
    17. Koch-Medina, Pablo & Munari, Cosimo & Svindland, Gregor, 2018. "Which eligible assets are compatible with comonotonic capital requirements?," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 18-26.
    18. Takaaki Koike & Liyuan Lin & Ruodu Wang, 2022. "Joint mixability and notions of negative dependence," Papers 2204.11438, arXiv.org, revised Jan 2024.
    19. Fabio Bellini & Tolulope Fadina & Ruodu Wang & Yunran Wei, 2020. "Parametric measures of variability induced by risk measures," Papers 2012.05219, arXiv.org, revised Apr 2022.
    20. Aleksy Leeuwenkamp & Wentao Hu, 2023. "New general dependence measures: construction, estimation and application to high-frequency stock returns," Papers 2309.00025, arXiv.org.

    More about this item

    Keywords

    Value at Risk; Higher-order Expected Shortfall; Gini Shortfall; PELVE; Generalized Pareto distribution; Regularly varying distribution;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:108:y:2023:i:c:p:107-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.