IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v61y2015icp135-145.html
   My bibliography  Save this article

Tail negative dependence and its applications for aggregate loss modeling

Author

Listed:
  • Hua, Lei

Abstract

Tail order of copulas can be used to describe the strength of dependence in the tails of a joint distribution. When the value of tail order is larger than the dimension, it may lead to tail negative dependence. First, we prove results on conditions that lead to tail negative dependence for Archimedean copulas. Using the conditions, we construct new parametric copula families that possess upper tail negative dependence. Among them, a copula based on a scale mixture with a generalized gamma random variable (GGS copula) is useful for modeling asymmetric tail negative dependence. We propose mixed copula regression based on the GGS copula for aggregate loss modeling of a medical expenditure panel survey dataset. For this dataset, we find that there exists upper tail negative dependence between loss frequency and loss severity, and the introduction of tail negative dependence structures significantly improves the aggregate loss modeling.

Suggested Citation

  • Hua, Lei, 2015. "Tail negative dependence and its applications for aggregate loss modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 135-145.
  • Handle: RePEc:eee:insuma:v:61:y:2015:i:c:p:135-145
    DOI: 10.1016/j.insmatheco.2015.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715000025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.
    2. Lei Hua & Michelle Xia, 2014. "Assessing High-Risk Scenarios by Full-Range Tail Dependence Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(3), pages 363-378, July.
    3. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    4. Joe, Harry & Hu, Taizhong, 1996. "Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 240-265, May.
    5. Krämer, Nicole & Brechmann, Eike C. & Silvestrini, Daniel & Czado, Claudia, 2013. "Total loss estimation using copula-based regression models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 829-839.
    6. McNeil, Alexander J. & Neslehová, Johanna, 2010. "From Archimedean to Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1772-1790, September.
    7. Yang, Xipei & Frees, Edward W. & Zhang, Zhengjun, 2011. "A generalized beta copula with applications in modeling multivariate long-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 265-284, September.
    8. Edward Frees & Jie Gao & Marjorie Rosenberg, 2011. "Predicting the Frequency and Amount of Health Care Expenditures," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(3), pages 377-392.
    9. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Gee Y. & Shi, Peng, 2019. "A dependent frequency–severity approach to modeling longitudinal insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 115-129.
    2. Vernic, Raluca & Bolancé, Catalina & Alemany, Ramon, 2022. "Sarmanov distribution for modeling dependence between the frequency and the average severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 111-125.
    3. Jaap Spreeuw, 2022. "The Copula Derived from the SAHARA Utility Function," Risks, MDPI, vol. 10(7), pages 1-10, June.
    4. Michelle Xia, 2018. "Bayesian Adjustment for Insurance Misrepresentation in Heavy-Tailed Loss Regression," Risks, MDPI, vol. 6(3), pages 1-16, August.
    5. Hua, Lei, 2017. "On a bivariate copula with both upper and lower full-range tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 94-104.
    6. Salazar García, Juan Fernando & Guzmán Aguilar, Diana Sirley & Hoyos Nieto, Daniel Arturo, 2023. "Modelación de una prima de seguros mediante la aplicación de métodos actuariales, teoría de fallas y Black-Scholes en la salud en Colombia [Modelling of an insurance premium through the application," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 35(1), pages 330-359, June.
    7. Karl Friedrich Siburg & Christopher Strothmann & Gregor Wei{ss}, 2022. "Comparing and quantifying tail dependence," Papers 2208.10319, arXiv.org.
    8. Hua, Lei & Joe, Harry, 2017. "Multivariate dependence modeling based on comonotonic factors," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 317-333.
    9. Lei Hua, 2016. "A Note on Upper Tail Behavior of Liouville Copulas," Risks, MDPI, vol. 4(4), pages 1-10, November.
    10. Li, Haijun & Hua, Lei, 2015. "Higher order tail densities of copulas and hidden regular variation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 143-155.
    11. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    12. Su, Jianxi & Hua, Lei, 2017. "A general approach to full-range tail dependence copulas," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 49-64.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Jianxi & Hua, Lei, 2017. "A general approach to full-range tail dependence copulas," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 49-64.
    2. Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
    3. Lei Hua, 2016. "A Note on Upper Tail Behavior of Liouville Copulas," Risks, MDPI, vol. 4(4), pages 1-10, November.
    4. Hua, Lei & Joe, Harry, 2017. "Multivariate dependence modeling based on comonotonic factors," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 317-333.
    5. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    6. Constantinescu, Corina & Hashorva, Enkelejd & Ji, Lanpeng, 2011. "Archimedean copulas in finite and infinite dimensions—with application to ruin problems," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 487-495.
    7. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    8. Kurowicka, Dorota & van Horssen, Wim T., 2015. "On an interaction function for copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 127-142.
    9. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    10. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    11. Paul Janssen & Luc Duchateau, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 271-275, August.
    12. Hua, Lei, 2017. "On a bivariate copula with both upper and lower full-range tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 94-104.
    13. Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.
    14. Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
    15. Li, Haijun & Hua, Lei, 2015. "Higher order tail densities of copulas and hidden regular variation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 143-155.
    16. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    17. Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.
    18. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    19. Gao, Guangyuan & Li, Jiahong, 2023. "Dependence modeling of frequency-severity of insurance claims using waiting time," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 29-51.
    20. Belzile, Léo R. & Nešlehová, Johanna G., 2017. "Extremal attractors of Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 68-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:61:y:2015:i:c:p:135-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.