IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v203y2024ics0047259x24000265.html
   My bibliography  Save this article

Multivariate directional tail-weighted dependence measures

Author

Listed:
  • Li, Xiaoting
  • Joe, Harry

Abstract

We propose a new family of directional dependence measures for multivariate distributions. The family of dependence measures is indexed by α≥1. When α=1, they measure the strength of dependence along different paths to the joint upper or lower orthant. For α large, they become tail-weighted dependence measures that put more weight in the joint upper or lower tails of the distribution. As α→∞, we show the convergence of the directional dependence measures to the multivariate tail dependence function and characterize the convergence pattern with an asymptotic expansion. This expansion leads to a method to estimate the multivariate tail dependence function using weighted least square regression. We develop rank-based sample estimators for the tail-weighted dependence measures and establish their asymptotic distributions. The practical utility of the tail-weighted dependence measures in multivariate tail inference is further demonstrated through their application to a financial dataset.

Suggested Citation

  • Li, Xiaoting & Joe, Harry, 2024. "Multivariate directional tail-weighted dependence measures," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000265
    DOI: 10.1016/j.jmva.2024.105319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.