IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0710.3959.html
   My bibliography  Save this paper

The t copula with Multiple Parameters of Degrees of Freedom: Bivariate Characteristics and Application to Risk Management

Author

Listed:
  • Xiaolin Luo
  • Pavel V. Shevchenko

Abstract

The t copula is often used in risk management as it allows for modelling tail dependence between risks and it is simple to simulate and calibrate. However, the use of a standard t copula is often criticized due to its restriction of having a single parameter for the degrees of freedom (dof) that may limit its capability to model the tail dependence structure in a multivariate case. To overcome this problem, grouped t copula was proposed recently, where risks are grouped a priori in such a way that each group has a standard t copula with its specific dof parameter. In this paper we propose the use of a grouped t copula, where each group consists of one risk factor only, so that a priori grouping is not required. The copula characteristics in the bivariate case are studied. We explain simulation and calibration procedures, including a simulation study on finite sample properties of the maximum likelihood estimators and Kendall's tau approximation. This new copula can be significantly different from the standard t copula in terms of risk measures such as tail dependence, value at risk and expected shortfall. Keywords: grouped t copula, tail dependence, risk management.

Suggested Citation

  • Xiaolin Luo & Pavel V. Shevchenko, 2007. "The t copula with Multiple Parameters of Degrees of Freedom: Bivariate Characteristics and Application to Risk Management," Papers 0710.3959, arXiv.org, revised Feb 2010.
  • Handle: RePEc:arx:papers:0710.3959
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0710.3959
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    2. Banachewicz, Konrad & van der Vaart, Aad, 2008. "Tail dependence of skewed grouped t-distributions," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2388-2399, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cordelia Rudolph & Uwe Schmock, 2020. "Multivariate Collective Risk Model: Dependent Claim Numbers and Panjer’s Recursion," Risks, MDPI, vol. 8(2), pages 1-31, May.
    2. Penikas, Henry, 2014. "Investment portfolio risk modelling based on hierarchical copulas," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 35(3), pages 18-38.
    3. Fuchs, Sebastian & Tschimpke, Marco, 2024. "A novel positive dependence property and its impact on a popular class of concordance measures," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    4. Hua, Lei & Joe, Harry, 2017. "Multivariate dependence modeling based on comonotonic factors," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 317-333.
    5. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    6. Fermanian, Jean-David & Wegkamp, Marten H., 2012. "Time-dependent copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 19-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janani Sri S. & Parthajit Kayal & G. Balasubramanian, 2022. "Can Equity be Safe-haven for Investment?," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 21(1), pages 32-63, March.
    2. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    3. Shilan Li & Jianxin Shi & Paul Albert & Hong-Bin Fang, 2022. "Dependence Structure Analysis and Its Application in Human Microbiome," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    4. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    5. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    6. Indranil Ghosh & Dalton Watts & Subrata Chakraborty, 2022. "Modeling Bivariate Dependency in Insurance Data via Copula: A Brief Study," JRFM, MDPI, vol. 15(8), pages 1-20, July.
    7. Weidong Lin & Jose Olmo & Abderrahim Taamouti, 2022. "Portfolio Selection Under Systemic Risk," Working Papers 202208, University of Liverpool, Department of Economics.
    8. Paolella, Marc S. & Polak, Paweł, 2015. "ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 282-297.
    9. Joe, Harry & Sang, Peijun, 2016. "Multivariate models for dependent clusters of variables with conditional independence given aggregation variables," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 114-132.
    10. Lorenzo Ricci & David Veredas, 2012. "TailCoR," Working Papers 1227, Banco de España.
      • Sla{dj}ana Babi'c & Christophe Ley & Lorenzo Ricci & David Veredas, 2020. "TailCoR," Papers 2011.14817, arXiv.org.
    11. Mendes, Beatriz Vaz de Melo & Arslan, Olcay, 2006. "Multivariate Skew Distributions Based on the GT-Copula," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 26(2), November.
    12. Xiaolin Luo & Pavel V. Shevchenko, 2012. "Bayesian Model Choice of Grouped t-Copula," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 1097-1119, December.
    13. Katja Ignatieva & Eckhard Platen, 2010. "Modelling Co-movements and Tail Dependency in the International Stock Market via Copulae," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(3), pages 261-302, September.
    14. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    15. He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
    16. Lewandowski, Daniel, 2005. "Generalized diagonal band copulas," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 49-67, August.
    17. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    18. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    19. Yu, Long & He, Yong & Zhang, Xinsheng, 2019. "Robust factor number specification for large-dimensional elliptical factor model," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    20. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0710.3959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.