IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2204.11438.html
   My bibliography  Save this paper

Joint mixability and notions of negative dependence

Author

Listed:
  • Takaaki Koike
  • Liyuan Lin
  • Ruodu Wang

Abstract

A joint mix is a random vector with a constant component-wise sum. The dependence structure of a joint mix minimizes some common objectives such as the variance of the component-wise sum, and it is regarded as a concept of extremal negative dependence. In this paper, we explore the connection between the joint mix structure and popular notions of negative dependence in statistics, such as negative correlation dependence, negative orthant dependence and negative association. A joint mix is not always negatively dependent in any of the above senses, but some natural classes of joint mixes are. We derive various necessary and sufficient conditions for a joint mix to be negatively dependent, and study the compatibility of these notions. For identical marginal distributions, we show that a negatively dependent joint mix solves a multi-marginal optimal transport problem for quadratic cost under a novel setting of uncertainty. Analysis of this optimal transport problem with heterogeneous marginals reveals a trade-off between negative dependence and the joint mix structure.

Suggested Citation

  • Takaaki Koike & Liyuan Lin & Ruodu Wang, 2022. "Joint mixability and notions of negative dependence," Papers 2204.11438, arXiv.org, revised Jan 2024.
  • Handle: RePEc:arx:papers:2204.11438
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2204.11438
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruodu Wang & Liang Peng & Jingping Yang, 2013. "Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities," Finance and Stochastics, Springer, vol. 17(2), pages 395-417, April.
    2. E. G. Coffman & M. Yannakakis, 1984. "Permuting Elements Within Columns of a Matrix in Order to Minimize Maximum Row Sum," Mathematics of Operations Research, INFORMS, vol. 9(3), pages 384-390, August.
    3. Alfred Galichon, 2016. "Optimal Transport Methods in Economics," Economics Books, Princeton University Press, edition 1, number 10870.
    4. Bubenik, Peter & Holbrook, John, 2007. "Densities for random balanced sampling," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 350-369, February.
    5. Carlier, G. & Dana, R.-A. & Galichon, A., 2012. "Pareto efficiency for the concave order and multivariate comonotonicity," Journal of Economic Theory, Elsevier, vol. 147(1), pages 207-229.
    6. Ansari, Jonathan & Rüschendorf, Ludger, 2021. "Ordering results for elliptical distributions with applications to risk bounds," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    7. Job Boerma & Aleh Tsyvinski & Alexander P. Zimin, 2021. "Sorting with Teams," Papers 2109.02730, arXiv.org, revised Nov 2023.
    8. Michael Kremer, 1993. "The O-Ring Theory of Economic Development," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 551-575.
    9. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    10. Dhaene, Jan & Denuit, Michel, 1999. "The safest dependence structure among risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 11-21, September.
    11. repec:dau:papers:123456789/9713 is not listed on IDEAS
    12. Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, vol. 2(1), pages 1-24, February.
    13. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc0p00hch is not listed on IDEAS
    14. Wang, Bin & Wang, Ruodu, 2011. "The complete mixability and convex minimization problems with monotone marginal densities," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1344-1360, November.
    15. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    16. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    17. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc0p00hch is not listed on IDEAS
    18. Giovanni Puccetti & Pietro Rigo & Bin Wang & Ruodu Wang, 2019. "Centers of probability measures without the mean," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1482-1501, September.
    19. Alfred Galichon, 2016. "Optimal transport methods in economics," Post-Print hal-03256830, HAL.
    20. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    21. Bernard, Carole & Jiang, Xiao & Wang, Ruodu, 2014. "Risk aggregation with dependence uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 93-108.
    22. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    23. Wen-Lian Hsu, 1984. "Approximation Algorithms for the Assembly Line Crew Scheduling Problem," Mathematics of Operations Research, INFORMS, vol. 9(3), pages 376-383, August.
    24. Roger Nelsen & Manuel Úbeda-Flores, 2012. "Directional dependence in multivariate distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 677-685, June.
    25. Cheung, Ka Chun & Lo, Ambrose, 2014. "Characterizing mutual exclusivity as the strongest negative multivariate dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 180-190.
    26. Job Boerma & Aleh Tsyvinski & Alexander P. Zimin, 2021. "Sorting with Team Formation," NBER Working Papers 29290, National Bureau of Economic Research, Inc.
    27. Lee, Woojoo & Ahn, Jae Youn, 2014. "On the multidimensional extension of countermonotonicity and its applications," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 68-79.
    28. Yugu Xiao & Jing Yao, 2020. "A note on joint mix random vectors," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(12), pages 3063-3072, June.
    29. Carole Bernard & Oleg Bondarenko & Steven Vanduffel, 2018. "Rearrangement algorithm and maximum entropy," Annals of Operations Research, Springer, vol. 261(1), pages 107-134, February.
    30. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.
    2. Jean-Gabriel Lauzier & Liyuan Lin & Ruodu Wang, 2023. "Pairwise counter-monotonicity," Papers 2302.11701, arXiv.org, revised May 2023.
    3. Jose Blanchet & Henry Lam & Yang Liu & Ruodu Wang, 2020. "Convolution Bounds on Quantile Aggregation," Papers 2007.09320, arXiv.org, revised Sep 2024.
    4. Chaoubi, Ihsan & Cossette, Hélène & Gadoury, Simon-Pierre & Marceau, Etienne, 2020. "On sums of two counter-monotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 47-60.
    5. Wang, Bin & Wang, Ruodu, 2015. "Extreme negative dependence and risk aggregation," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 12-25.
    6. Ruodu Wang & Zuo Quan Xu & Xun Yu Zhou, 2019. "Dual utilities on risk aggregation under dependence uncertainty," Finance and Stochastics, Springer, vol. 23(4), pages 1025-1048, October.
    7. Mao, Tiantian & Wang, Ruodu, 2015. "On aggregation sets and lower-convex sets," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 170-181.
    8. Carole Bernard & Don McLeish, 2016. "Algorithms for Finding Copulas Minimizing Convex Functions of Sums," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-26, October.
    9. Wang, Ruodu & Zitikis, Ričardas, 2020. "Weak comonotonicity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 386-397.
    10. Haiyan Liu & Bin Wang & Ruodu Wang & Sheng Chao Zhuang, 2023. "Distorted optimal transport," Papers 2308.11238, arXiv.org.
    11. Jae Youn Ahn & Sebastian Fuchs, 2020. "On Minimal Copulas under the Concordance Order," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 762-780, March.
    12. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    13. Giovanni Puccetti & Pietro Rigo & Bin Wang & Ruodu Wang, 2019. "Centers of probability measures without the mean," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1482-1501, September.
    14. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    15. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, vol. 3(4), pages 1-25, December.
    16. Yichun Chi & Zuo Quan Xu & Sheng Chao Zhuang, 2022. "Distributionally Robust Goal-Reaching Optimization in the Presence of Background Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(3), pages 351-382, August.
    17. Ruodu Wang & Ricardas Zitikis, 2018. "Weak comonotonicity," Papers 1812.04827, arXiv.org, revised Sep 2019.
    18. Jae Youn Ahn, 2015. "Negative Dependence Concept in Copulas and the Marginal Free Herd Behavior Index," Papers 1503.03180, arXiv.org.
    19. Chuancun Yin & Dan Zhu, 2016. "Sharp Convex Bounds on the Aggregate Sums–An Alternative Proof," Risks, MDPI, vol. 4(4), pages 1-8, September.
    20. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2204.11438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.