IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i510p599-611.html
   My bibliography  Save this article

Foundations for Envelope Models and Methods

Author

Listed:
  • R. Dennis Cook
  • Xin Zhang

Abstract

Envelopes were recently proposed by Cook, Li and Chiaromonte as a method for reducing estimative and predictive variations in multivariate linear regression. We extend their formulation, proposing a general definition of an envelope and a general framework for adapting envelope methods to any estimation procedure. We apply the new envelope methods to weighted least squares, generalized linear models and Cox regression. Simulations and illustrative data analysis show the potential for envelope methods to significantly improve standard methods in linear discriminant analysis, logistic regression and Poisson regression. Supplementary materials for this article are available online.

Suggested Citation

  • R. Dennis Cook & Xin Zhang, 2015. "Foundations for Envelope Models and Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 599-611, June.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:599-611
    DOI: 10.1080/01621459.2014.983235
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.983235
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.983235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. May, Paul & Biesecker, Matthew & Rekabdarkolaee, Hossein Moradi, 2022. "Response envelopes for linear coregionalization models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
    3. Jain Yashita & Ding Shanshan & Qiu Jing, 2019. "Sliced inverse regression for integrative multi-omics data analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(1), pages 1-13, February.
    4. Cook, R. Dennis & Forzani, Liliana & Su, Zhihua, 2016. "A note on fast envelope estimation," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 42-54.
    5. Yue Zhao & Ingrid Van Keilegom & Shanshan Ding, 2022. "Envelopes for censored quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1562-1585, December.
    6. Dong, Yushen & Wu, Yichao, 2022. "Fréchet kernel sliced inverse regression," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    7. Majumdar, Subhabrata & Chatterjee, Snigdhansu, 2022. "On weighted multivariate sign functions," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    8. Kai Deng & Xin Zhang, 2022. "Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction," Biometrics, The International Biometric Society, vol. 78(3), pages 1067-1079, September.
    9. D. J. Eck & R. D. Cook, 2017. "Weighted envelope estimation to handle variability in model selection," Biometrika, Biometrika Trust, vol. 104(3), pages 743-749.
    10. Ekvall, Karl Oskar, 2022. "Targeted principal components regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    11. Minji Lee & Zhihua Su, 2020. "A Review of Envelope Models," International Statistical Review, International Statistical Institute, vol. 88(3), pages 658-676, December.
    12. Lan Liu & Wei Li & Zhihua Su & Dennis Cook & Luca Vizioli & Essa Yacoub, 2022. "Efficient estimation via envelope chain in magnetic resonance imaging‐based studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 481-501, June.
    13. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    14. Yeonhee Park & Zhihua Su & Hongtu Zhu, 2017. "Groupwise envelope models for imaging genetic analysis," Biometrics, The International Biometric Society, vol. 73(4), pages 1243-1253, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:599-611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.