IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v42y2012i02p601-629_00.html
   My bibliography  Save this article

Tail Comonotonicity and Conservative Risk Measures

Author

Listed:
  • Hua, Lei
  • Joe, Harry

Abstract

Tail comonotonicity, or asymptotic full dependence, is proposed as a reasonable conservative dependence structure for modeling dependent risks. Some sufficient conditions have been obtained to justify the conservativity of tail comonotonicity. Simulation studies also suggest that, by using tail comonotonicity, one does not lose too much accuracy but gain reasonable conservative risk measures, especially when considering high scenario risks. A copula model with tail comonotonicity is applied to an auto insurance dataset. Particular models for tail comonotonicity for loss data can be based on the BB2 and BB3 copula families and their multivariate extensions.

Suggested Citation

  • Hua, Lei & Joe, Harry, 2012. "Tail Comonotonicity and Conservative Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 42(2), pages 601-629, November.
  • Handle: RePEc:cup:astinb:v:42:y:2012:i:02:p:601-629_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100001215/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Haijun & Hua, Lei, 2015. "Higher order tail densities of copulas and hidden regular variation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 143-155.
    2. Das, Bikramjit & Fasen-Hartmann, Vicky, 2018. "Risk contagion under regular variation and asymptotic tail independence," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 194-215.
    3. Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
    4. Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
    5. Su, Jianxi & Hua, Lei, 2017. "A general approach to full-range tail dependence copulas," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 49-64.
    6. Gribkova, N.V. & Su, J. & Zitikis, R., 2022. "Inference for the tail conditional allocation: Large sample properties, insurance risk assessment, and compound sums of concomitants," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 199-222.
    7. Bikramjit Das & Vicky Fasen, 2016. "Risk contagion under regular variation and asymptotic tail independence," Papers 1603.09406, arXiv.org, revised Apr 2017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:42:y:2012:i:02:p:601-629_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.