IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v16y1984i2p157-170.html
   My bibliography  Save this article

Integrals and derivatives of regularly varying functions in d and domains of attraction of stable distributions II

Author

Listed:
  • de Haan, L.
  • Omey, E.

Abstract

A theorem on regularly varying functions in 2 is proved and applied to domains of attraction of stable laws with index 1 [less-than-or-equals, slant] [alpha] [less-than-or-equals, slant] 2. We also present a theory of [Pi]-variation in 2. Unlike the situation in 1 the latter is not connected with domain of attraction theory. The situation in d (d > 1) is more complicated but not essentially different; for simplicity we limit ourselves to 2. This article complements de Haan and Resnick (1979) where the situation for 0

Suggested Citation

  • de Haan, L. & Omey, E., 1984. "Integrals and derivatives of regularly varying functions in d and domains of attraction of stable distributions II," Stochastic Processes and their Applications, Elsevier, vol. 16(2), pages 157-170, February.
  • Handle: RePEc:eee:spapps:v:16:y:1984:i:2:p:157-170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(84)90016-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Haijun & Hua, Lei, 2015. "Higher order tail densities of copulas and hidden regular variation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 143-155.
    2. Tiandong Wang & Sidney I. Resnick, 2018. "Multivariate Regular Variation of Discrete Mass Functions with Applications to Preferential Attachment Networks," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 1029-1042, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:16:y:1984:i:2:p:157-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.