A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2014.11.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- J. López‐Fidalgo & C. Tommasi & P. C. Trandafir, 2007. "An optimal experimental design criterion for discriminating between non‐normal models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 231-242, April.
- Douglas P. Wiens, 2009. "Robust discrimination designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 805-829, September.
- Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
- Dariusz Uciński & Barbara Bogacka, 2005. "T‐optimum designs for discrimination between two multiresponse dynamic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 3-18, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
- Chiara Tommasi & Juan M. Rodríguez-Díaz & Jesús F. López-Fidalgo, 2023. "An equivalence theorem for design optimality with respect to a multi-objective criterion," Statistical Papers, Springer, vol. 64(4), pages 1041-1056, August.
- Lucy L. Gao & Julie Zhou, 2017. "D-optimal designs based on the second-order least squares estimator," Statistical Papers, Springer, vol. 58(1), pages 77-94, March.
- David Mogalle & Philipp Seufert & Jan Schwientek & Michael Bortz & Karl-Heinz Küfer, 2024. "Computing T-optimal designs via nested semi-infinite programming and twofold adaptive discretization," Computational Statistics, Springer, vol. 39(5), pages 2451-2478, July.
- Weng Kee Wong & Yue Yin & Julie Zhou, 2019. "Using SeDuMi to find various optimal designs for regression models," Statistical Papers, Springer, vol. 60(5), pages 1583-1603, October.
- Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2022. "Optimal design of experiments for implicit models," LSE Research Online Documents on Economics 107584, London School of Economics and Political Science, LSE Library.
- Belmiro P. M. Duarte, 2023. "Exact Optimal Designs of Experiments for Factorial Models via Mixed-Integer Semidefinite Programming," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- David Mogalle & Philipp Seufert & Jan Schwientek & Michael Bortz & Karl-Heinz Küfer, 2024. "Computing T-optimal designs via nested semi-infinite programming and twofold adaptive discretization," Computational Statistics, Springer, vol. 39(5), pages 2451-2478, July.
- Dette, Holger & Melas, Viatcheslav B. & Shpilev, Petr, 2017. "T-optimal discriminating designs for Fourier regression models," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 196-206.
- Laura Deldossi & Silvia Angela Osmetti & Chiara Tommasi, 2019. "Optimal design to discriminate between rival copula models for a bivariate binary response," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 147-165, March.
- Dette, Holger & Titoff, Stefanie, 2008. "Optimal discrimination designs," Technical Reports 2008,06, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Kira Alhorn & Holger Dette & Kirsten Schorning, 2021. "Optimal Designs for Model Averaging in non-nested Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 745-778, August.
- Elisa Perrone & Andreas Rappold & Werner G. Müller, 2017. "$$D_s$$ D s -optimality in copula models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 403-418, August.
- Rivas-López, M.J. & Yu, R.C. & López-Fidalgo, J. & Ruiz, G., 2017. "Optimal experimental design on the loading frequency for a probabilistic fatigue model for plain and fibre-reinforced concrete," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 363-374.
- Li Wang & Feng Guo, 2014. "Semidefinite relaxations for semi-infinite polynomial programming," Computational Optimization and Applications, Springer, vol. 58(1), pages 133-159, May.
- S. Mishra & M. Jaiswal & H. Le Thi, 2012. "Nonsmooth semi-infinite programming problem using Limiting subdifferentials," Journal of Global Optimization, Springer, vol. 53(2), pages 285-296, June.
- Cao Thanh Tinh & Thai Doan Chuong, 2022. "Conic Linear Programming Duals for Classes of Quadratic Semi-Infinite Programs with Applications," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 570-596, August.
- Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
- Ray-Bing Chen & Ping-Yang Chen & Cheng-Lin Hsu & Weng Kee Wong, 2020. "Hybrid algorithms for generating optimal designs for discriminating multiple nonlinear models under various error distributional assumptions," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-30, October.
- Nazih Abderrazzak Gadhi, 2019. "Necessary optimality conditions for a nonsmooth semi-infinite programming problem," Journal of Global Optimization, Springer, vol. 74(1), pages 161-168, May.
- Santiago Campos-Barreiro & Jesús López-Fidalgo, 2015. "D-optimal experimental designs for a growth model applied to a Holstein-Friesian dairy farm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 491-505, September.
- Woods, David C. & McGree, James M. & Lewis, Susan M., 2017. "Model selection via Bayesian information capacity designs for generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 226-238.
- Rafael Correa & Marco A. López & Pedro Pérez-Aros, 2023. "Optimality Conditions in DC-Constrained Mathematical Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1191-1225, September.
- Jan Schwientek & Tobias Seidel & Karl-Heinz Küfer, 2021. "A transformation-based discretization method for solving general semi-infinite optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 83-114, February.
- Víctor Casero-Alonso & Andrey Pepelyshev & Weng K. Wong, 2018. "A web-based tool for designing experimental studies to detect hormesis and estimate the threshold dose," Statistical Papers, Springer, vol. 59(4), pages 1307-1324, December.
- Elham Yousefi & Luc Pronzato & Markus Hainy & Werner G. Müller & Henry P. Wynn, 2023.
"Discrimination between Gaussian process models: active learning and static constructions,"
Statistical Papers, Springer, vol. 64(4), pages 1275-1304, August.
- Yousefi, Elham & Pronzato, Luc & Hainy, Markus & Müller, Werner G. & Wynn, Henry P., 2023. "Discrimination between Gaussian process models: active learning and static constructions," LSE Research Online Documents on Economics 118672, London School of Economics and Political Science, LSE Library.
- Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.
More about this item
Keywords
Continuous design; Equivalence theorem; Global optimization; Maximum likelihood design; Minimax program; Semi-Infinite Programming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:135:y:2015:i:c:p:11-24. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.