IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v59y2018i4d10.1007_s00362-018-1038-5.html
   My bibliography  Save this article

A web-based tool for designing experimental studies to detect hormesis and estimate the threshold dose

Author

Listed:
  • Víctor Casero-Alonso

    (University of Castilla–La Mancha)

  • Andrey Pepelyshev

    (Cardiff University
    St. Petersburg State University)

  • Weng K. Wong

    (University of California at Los Angeles)

Abstract

Hormesis has been widely observed and debated in a variety of context in biomedicine and toxicological sciences. Detecting its presence can be an important problem with wide ranging implications. However, there is little work on constructing an efficient experiment to detect its existence or estimate the threshold dose. We use optimal design theory to develop a variety of locally optimal designs to detect hormesis, estimate the threshold dose and the zero-equivalent point (ZEP) for commonly used models in toxicology and risk assessment. To facilitate use of more efficient designs to detect hormesis, estimate threshold dose and estimate the ZEP in practice, we implement computer algorithms and create a user-friendly web site to help the biomedical researcher generate different types of optimal designs. The online tool facilitates the user to evaluate robustness properties of a selected design to various model assumptions and compare designs before implementation.

Suggested Citation

  • Víctor Casero-Alonso & Andrey Pepelyshev & Weng K. Wong, 2018. "A web-based tool for designing experimental studies to detect hormesis and estimate the threshold dose," Statistical Papers, Springer, vol. 59(4), pages 1307-1324, December.
  • Handle: RePEc:spr:stpapr:v:59:y:2018:i:4:d:10.1007_s00362-018-1038-5
    DOI: 10.1007/s00362-018-1038-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-018-1038-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-018-1038-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. López‐Fidalgo & C. Tommasi & P. C. Trandafir, 2007. "An optimal experimental design criterion for discriminating between non‐normal models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 231-242, April.
    2. Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
    3. Wong, Weng Kee, 1994. "Comparing robust properties of A, D, E and G-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 18(4), pages 441-448, November.
    4. Mariano Amo-Salas & Elvira Delgado-Márquez & Lenka Filová & Jesús López-Fidalgo, 2016. "Optimal designs for model discrimination and fitting for the flow of particles," Statistical Papers, Springer, vol. 57(4), pages 875-891, December.
    5. Daniel L. Hunt & Dale Bowman, 2004. "A Parametric Model for Detecting Hormetic Effects in Developmental Toxicity Studies," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 65-72, February.
    6. Moerbeek, M., 2005. "Robustness properties of A-, D-, and E-optimal designs for polynomial growth models with autocorrelated errors," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 765-778, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. López Fidalgo & I. M. Ortiz Rodr�guez & Weng Kee Wong, 2011. "Design issues for population growth models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(3), pages 501-512, November.
    2. Elham Yousefi & Luc Pronzato & Markus Hainy & Werner G. Müller & Henry P. Wynn, 2023. "Discrimination between Gaussian process models: active learning and static constructions," Statistical Papers, Springer, vol. 64(4), pages 1275-1304, August.
    3. Rivas-López, M.J. & Yu, R.C. & López-Fidalgo, J. & Ruiz, G., 2017. "Optimal experimental design on the loading frequency for a probabilistic fatigue model for plain and fibre-reinforced concrete," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 363-374.
    4. S. G. J. Senarathne & C. C. Drovandi & J. M. McGree, 2020. "Bayesian sequential design for Copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 454-478, June.
    5. Anna Szczepańska, 2013. "Simultaneous choice of time points and the block design in the growth curve model," Statistical Papers, Springer, vol. 54(2), pages 413-425, May.
    6. Dette, Holger & Titoff, Stefanie, 2008. "Optimal discrimination designs," Technical Reports 2008,06, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. Moerbeek, M., 2005. "Robustness properties of A-, D-, and E-optimal designs for polynomial growth models with autocorrelated errors," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 765-778, April.
    8. Sergio Pozuelo-Campos & Víctor Casero-Alonso & Mariano Amo-Salas, 2021. "Effect of Probability Distribution of the Response Variable in Optimal Experimental Design with Applications in Medicine," Mathematics, MDPI, vol. 9(9), pages 1-15, April.
    9. Sahu, Nitesh & Babu, Prabhu, 2021. "A new monotonic algorithm for the E-optimal experiment design problem," Statistics & Probability Letters, Elsevier, vol. 174(C).
    10. Santiago Campos-Barreiro & Jesús López-Fidalgo, 2015. "D-optimal experimental designs for a growth model applied to a Holstein-Friesian dairy farm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 491-505, September.
    11. Woods, David C. & McGree, James M. & Lewis, Susan M., 2017. "Model selection via Bayesian information capacity designs for generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 226-238.
    12. Kira Alhorn & Holger Dette & Kirsten Schorning, 2021. "Optimal Designs for Model Averaging in non-nested Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 745-778, August.
    13. Jun Yu & HaiYing Wang, 2022. "Subdata selection algorithm for linear model discrimination," Statistical Papers, Springer, vol. 63(6), pages 1883-1906, December.
    14. David Mogalle & Philipp Seufert & Jan Schwientek & Michael Bortz & Karl-Heinz Küfer, 2024. "Computing T-optimal designs via nested semi-infinite programming and twofold adaptive discretization," Computational Statistics, Springer, vol. 39(5), pages 2451-2478, July.
    15. Laura Deldossi & Silvia Angela Osmetti & Chiara Tommasi, 2019. "Optimal design to discriminate between rival copula models for a bivariate binary response," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 147-165, March.
    16. Dette, Holger & Scheder, Regine, 2008. "A finite sample comparison of nonparametric estimates of the effective dose in quantal bioassay," Technical Reports 2008,05, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    17. Tommasi, C. & López-Fidalgo, J., 2010. "Bayesian optimum designs for discriminating between models with any distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 143-150, January.
    18. Duarte, Belmiro P.M. & Wong, Weng Kee & Atkinson, Anthony C., 2015. "A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 11-24.
    19. Sanyu Zhou & Defa Wang & Jingjing Zhu, 2020. "Construction of simultaneous confidence bands for a percentile hyper-plane with predictor variables constrained in an ellipsoidal region," Statistical Papers, Springer, vol. 61(3), pages 1335-1346, June.
    20. Steven Kim & Jeffrey Wand & Christina Magana‐Ramirez & Jenel Fraij, 2021. "Logistic Regression Models with Unspecified Low Dose–Response Relationships and Experimental Designs for Hormesis Studies," Risk Analysis, John Wiley & Sons, vol. 41(1), pages 92-109, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:59:y:2018:i:4:d:10.1007_s00362-018-1038-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.