IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v60y2019i5d10.1007_s00362-017-0887-7.html
   My bibliography  Save this article

Using SeDuMi to find various optimal designs for regression models

Author

Listed:
  • Weng Kee Wong

    (University of California)

  • Yue Yin

    (University of Victoria)

  • Julie Zhou

    (University of Victoria)

Abstract

We introduce a powerful and yet seldom used numerical approach in statistics for solving a broad class of optimization problems where the search space is discretized. This optimization tool is widely used in engineering for solving semidefinite programming (SDP) problems and is called self-dual minimization (SeDuMi). We focus on optimal design problems and demonstrate how to formulate A-, A $$_s$$ s -, c-, I-, and L-optimal design problems as SDP problems and show how they can be effectively solved by SeDuMi in MATLAB. We also show the numerical approach is flexible by applying it to further find optimal designs based on the weighted least squares estimator or when there are constraints on the weight distribution of the sought optimal design. For approximate designs, the optimality of the SDP-generated designs can be verified using the Kiefer–Wolfowitz equivalence theorem. SDP also finds optimal designs for nonlinear regression models commonly used in social and biomedical research. Several examples are presented for linear and nonlinear models.

Suggested Citation

  • Weng Kee Wong & Yue Yin & Julie Zhou, 2019. "Using SeDuMi to find various optimal designs for regression models," Statistical Papers, Springer, vol. 60(5), pages 1583-1603, October.
  • Handle: RePEc:spr:stpapr:v:60:y:2019:i:5:d:10.1007_s00362-017-0887-7
    DOI: 10.1007/s00362-017-0887-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-017-0887-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-017-0887-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duarte, Belmiro P.M. & Wong, Weng Kee & Atkinson, Anthony C., 2015. "A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 11-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Yzenbrandt & Julie Zhou, 2022. "Minimax robust designs for regression models with heteroscedastic errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 203-222, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
    2. Belmiro P. M. Duarte, 2023. "Exact Optimal Designs of Experiments for Factorial Models via Mixed-Integer Semidefinite Programming," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    3. Chiara Tommasi & Juan M. Rodríguez-Díaz & Jesús F. López-Fidalgo, 2023. "An equivalence theorem for design optimality with respect to a multi-objective criterion," Statistical Papers, Springer, vol. 64(4), pages 1041-1056, August.
    4. David Mogalle & Philipp Seufert & Jan Schwientek & Michael Bortz & Karl-Heinz Küfer, 2024. "Computing T-optimal designs via nested semi-infinite programming and twofold adaptive discretization," Computational Statistics, Springer, vol. 39(5), pages 2451-2478, July.
    5. Lucy L. Gao & Julie Zhou, 2017. "D-optimal designs based on the second-order least squares estimator," Statistical Papers, Springer, vol. 58(1), pages 77-94, March.
    6. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2022. "Optimal design of experiments for implicit models," LSE Research Online Documents on Economics 107584, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:60:y:2019:i:5:d:10.1007_s00362-017-0887-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.