IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v4y2005i1n32.html
   My bibliography  Save this article

A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics

Author

Listed:
  • Schäfer Juliane

    (Department of Statistics, University of Munich, Germany)

  • Strimmer Korbinian

    (Department of Statistics, University of Munich, Germany)

Abstract

Inferring large-scale covariance matrices from sparse genomic data is an ubiquitous problem in bioinformatics. Clearly, the widely used standard covariance and correlation estimators are ill-suited for this purpose. As statistically efficient and computationally fast alternative we propose a novel shrinkage covariance estimator that exploits the Ledoit-Wolf (2003) lemma for analytic calculation of the optimal shrinkage intensity.Subsequently, we apply this improved covariance estimator (which has guaranteed minimum mean squared error, is well-conditioned, and is always positive definite even for small sample sizes) to the problem of inferring large-scale gene association networks. We show that it performs very favorably compared to competing approaches both in simulations as well as in application to real expression data.

Suggested Citation

  • Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
  • Handle: RePEc:bpj:sagmbi:v:4:y:2005:i:1:n:32
    DOI: 10.2202/1544-6115.1175
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1175
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:4:y:2005:i:1:n:32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.