IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v181y2021ics0047259x20302554.html
   My bibliography  Save this article

Testing high dimensional covariance matrices via posterior Bayes factor

Author

Listed:
  • Wang, Zhendong
  • Xu, Xingzhong

Abstract

With the advent of the era of big data, high dimensional covariance matrices are increasingly encountered and testing covariance structure has become an active area in contemporary statistical inference. Conventional testing methods fail when addressing high dimensional data due to the singularity of the sample covariance matrices. In this paper, we propose a novel test for the prominent identity test and sphericity test based on posterior Bayes factor. For general population model with finite fourth order moment, the limiting null distribution of the test statistic is obtained. Furthermore, we derive the asymptotic power function when the sample size and dimension are proportional against spiked alternatives. When the dimension is much larger than the sample size, under general alternatives, the limiting alternative distribution together with the consistency of the new test is also obtained. Monte Carlo simulation results show that the limiting approximation is quite accurate under the null for finite sample, and the proposed test outperforms some well-known tests in the literature in terms of Type I error rate and the empirical power.

Suggested Citation

  • Wang, Zhendong & Xu, Xingzhong, 2021. "Testing high dimensional covariance matrices via posterior Bayes factor," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:jmvana:v:181:y:2021:i:c:s0047259x20302554
    DOI: 10.1016/j.jmva.2020.104674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X20302554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2020.104674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.
    2. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    3. Tian, Xintao & Lu, Yuting & Li, Weiming, 2015. "A robust test for sphericity of high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 217-227.
    4. Baik, Jinho & Silverstein, Jack W., 2006. "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1382-1408, July.
    5. Fisher, Thomas J. & Sun, Xiaoqian & Gallagher, Colin M., 2010. "A new test for sphericity of the covariance matrix for high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2554-2570, November.
    6. Weiming Li & Zeng Li & Jianfeng Yao, 2018. "Joint Central Limit Theorem for Eigenvalue Statistics from Several Dependent Large Dimensional Sample Covariance Matrices with Application," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(3), pages 699-728, September.
    7. Wang, Qinwen & Silverstein, Jack W. & Yao, Jian-feng, 2014. "A note on the CLT of the LSS for sample covariance matrix from a spiked population model," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 194-207.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhendong Wang & Xingzhong Xu, 2021. "High-dimensional sphericity test by extended likelihood ratio," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1169-1212, November.
    2. Butucea, Cristina & Zgheib, Rania, 2016. "Sharp minimax tests for large Toeplitz covariance matrices with repeated observations," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 164-176.
    3. Deepak Nag Ayyala & Santu Ghosh & Daniel F. Linder, 2022. "Covariance matrix testing in high dimension using random projections," Computational Statistics, Springer, vol. 37(3), pages 1111-1141, July.
    4. Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
    5. Tian, Xintao & Lu, Yuting & Li, Weiming, 2015. "A robust test for sphericity of high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 217-227.
    6. Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
    7. Glombek, Konstantin, 2013. "A Jarque-Bera test for sphericity of a large-dimensional covariance matrix," Discussion Papers in Econometrics and Statistics 1/13, University of Cologne, Institute of Econometrics and Statistics.
    8. Wang, Cheng & Yang, Jing & Miao, Baiqi & Cao, Longbing, 2013. "Identity tests for high dimensional data using RMT," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 128-137.
    9. Mao, Guangyu, 2016. "A note on tests for high-dimensional covariance matrices," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 89-92.
    10. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    11. Zhang, Xiaoxu & Zhao, Ping & Feng, Long, 2022. "Robust sphericity test in the panel data model," Statistics & Probability Letters, Elsevier, vol. 182(C).
    12. Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.
    13. Xu, Kai & Tian, Yan & He, Daojiang, 2021. "A high dimensional nonparametric test for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    14. Qian, Manling & Tao, Li & Li, Erqian & Tian, Maozai, 2020. "Hypothesis testing for the identity of high-dimensional covariance matrices," Statistics & Probability Letters, Elsevier, vol. 161(C).
    15. Ikeda, Yuki & Kubokawa, Tatsuya & Srivastava, Muni S., 2016. "Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 95-108.
    16. LaĆ­la Luana Campos & Daniel Furtado Ferreira, 2022. "Robust modified classical spherical tests in the presence of outliers," Statistical Papers, Springer, vol. 63(5), pages 1561-1576, October.
    17. Xu, Kai & Hao, Xinxin, 2019. "A nonparametric test for block-diagonal covariance structure in high dimension and small samples," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 551-567.
    18. Long Feng & Changliang Zou & Zhaojun Wang, 2016. "Multivariate-Sign-Based High-Dimensional Tests for the Two-Sample Location Problem," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 721-735, April.
    19. Tsukuda, Koji & Matsuura, Shun, 2021. "Limit theorem associated with Wishart matrices with application to hypothesis testing for common principal components," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    20. Wang, Xuanci & Zhang, Bin, 2024. "Target selection in shrinkage estimation of covariance matrix: A structural similarity approach," Statistics & Probability Letters, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:181:y:2021:i:c:s0047259x20302554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.