On Factor Models with Random Missing: EM Estimation, Inference, and Cross Validation
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Jin, Sainan & Miao, Ke & Su, Liangjun, 2021. "On factor models with random missing: EM estimation, inference, and cross validation," Journal of Econometrics, Elsevier, vol. 222(1), pages 745-777.
References listed on IDEAS
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Working Paper
2013/06, Norges Bank.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Forni, Mario & Lippi, Marco, 2001.
"The Generalized Dynamic Factor Model: Representation Theory,"
Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
- Lippi, Marco & Forni, Mario, 2000. "The Generalized Dynamic Factor Model: Representation Theory," CEPR Discussion Papers 2509, C.E.P.R. Discussion Papers.
- Jianqing Fan & Yuan Liao & Martina Mincheva, 2013.
"Large covariance estimation by thresholding principal orthogonal complements,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
- Fan, Jianqing & Liao, Yuan & Mincheva, Martina, 2011. "Large covariance estimation by thresholding principal orthogonal complements," MPRA Paper 38697, University Library of Munich, Germany.
- Lu, Xun & Su, Liangjun, 2016.
"Shrinkage estimation of dynamic panel data models with interactive fixed effects,"
Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
- Xun Lu & Su Liangjun, 2015. "Shrinkage Estimation of Dynamic Panel Data Models with Interactive Fixed Effects," Working Papers 02-2015, Singapore Management University, School of Economics.
- Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011.
"A two-step estimator for large approximate dynamic factor models based on Kalman filtering,"
Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2006. "A Two-step estimator for large approximate dynamic factor models based on Kalman filtering," THEMA Working Papers 2006-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," PSE-Ecole d'économie de Paris (Postprint) hal-00638009, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00638009, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00638009, HAL.
- Catherine Doz & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00844811, HAL.
- Reichlin, Lucrezia & Doz, Catherine & Giannone, Domenico, 2007. "A Two-Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering," CEPR Discussion Papers 6043, C.E.P.R. Discussion Papers.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Su, Liangjun & Chen, Qihui, 2013. "Testing Homogeneity In Panel Data Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1079-1135, December.
- G. Mesters & S. J. Koopman & M. Ooms, 2016.
"Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 659-687, April.
- Geert Mesters & Siem Jan Koopman & Marius Ooms, 2011. "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models," Tinbergen Institute Discussion Papers 11-090/4, Tinbergen Institute.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Nicolai Meinshausen & Peter Bühlmann, 2010. "Stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 417-473, September.
- Moon, Hyungsik Roger & Weidner, Martin, 2017.
"Dynamic Linear Panel Regression Models With Interactive Fixed Effects,"
Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
- Hyungsik Roger Moon & Martin Weidner, 2013. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers CWP63/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hyungsik Roger Moon & Martin Weidner, 2014. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers CWP47/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- repec:hal:journl:peer-00844811 is not listed on IDEAS
- Marcellino, Massimiliano & Sivec, Vasja, 2016.
"Monetary, fiscal and oil shocks: Evidence based on mixed frequency structural FAVARs,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 335-348.
- Marcellino, Massimiliano & Sivec, Vasja, 2015. "Monetary, Fiscal and Oil Shocks: Evidence based on Mixed Frequency Structural FAVARs," CEPR Discussion Papers 10610, C.E.P.R. Discussion Papers.
- Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
- Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
- Maximiano Pinheiro & António Rua & Francisco Dias, 2013.
"Dynamic Factor Models with Jagged Edge Panel Data: Taking on Board the Dynamics of the Idiosyncratic Components,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(1), pages 80-102, February.
- António Rua & Maximiano Pinheiro, 2009. "Dynamic factor models with jagged edge panel data: Taking on board the dynamics of the idiosyncratic components," Working Papers w200913, Banco de Portugal, Economics and Research Department.
- Ludvigson, Sydney C. & Ng, Serena, 2007.
"The empirical risk-return relation: A factor analysis approach,"
Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
- Sydney C. Ludvigson & Serena Ng, 2005. "The Empirical Risk-Return Relation: A Factor Analysis Approach," NBER Working Papers 11477, National Bureau of Economic Research, Inc.
- Sydney Ludvigson & Serena Ng, 2006. "The Empirical Risk-Return Relation: a factor analysis approach," 2006 Meeting Papers 236, Society for Economic Dynamics.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021.
"Matrix Completion Methods for Causal Panel Data Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2017. "Matrix Completion Methods for Causal Panel Data Models," Papers 1710.10251, arXiv.org, revised Apr 2022.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2018. "Matrix Completion Methods for Causal Panel Data Models," NBER Working Papers 25132, National Bureau of Economic Research, Inc.
- Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
- Jushan Bai & Kunpeng Li, 2016.
"Maximum Likelihood Estimation and Inference for Approximate Factor Models of High Dimension,"
The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 298-309, May.
- Bai, Jushan & Li, Kunpeng, 2012. "Maximum likelihood estimation and inference for approximate factor models of high dimension," MPRA Paper 42099, University Library of Munich, Germany, revised 19 Oct 2012.
- Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, February.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005.
"Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases,"
CEPR Discussion Papers
5178, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 633, European Central Bank.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Jungbacker, B. & Koopman, S.J. & van der Wel, M., 2011.
"Maximum likelihood estimation for dynamic factor models with missing data,"
Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1358-1368, August.
- B. Jungbacker & S.J. Koopman & M. van Der Wel, 2011. "Maximum likelihood estimation for dynamic factor models with missing data," Post-Print hal-00828980, HAL.
- Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
- Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000.
"The Generalized Dynamic-Factor Model: Identification And Estimation,"
The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
- Su, Liangjun & Jin, Sainan & Zhang, Yonghui, 2015.
"Specification test for panel data models with interactive fixed effects,"
Journal of Econometrics, Elsevier, vol. 186(1), pages 222-244.
- Liangjun Su & Sainan Jin & Yonghui Zhang, 2014. "Specification Test for Panel Data Models with Interactive Fixed Effects," Working Papers 08-2014, Singapore Management University, School of Economics.
- Bai, Jushan & Ng, Serena, 2019. "Rank regularized estimation of approximate factor models," Journal of Econometrics, Elsevier, vol. 212(1), pages 78-96.
- Chamberlain, Gary & Rothschild, Michael, 1983.
"Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets,"
Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
- Gary Chamberlain & Michael Rothschild, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," NBER Working Papers 0996, National Bureau of Economic Research, Inc.
- Chamberlain, Gary & Rothschild, Michael, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Scholarly Articles 3230355, Harvard University Department of Economics.
- Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
- Thomas J. Sargent & Christopher A. Sims, 1977.
"Business cycle modeling without pretending to have too much a priori economic theory,"
Working Papers
55, Federal Reserve Bank of Minneapolis.
- Tom Doan, "undated". "RATS program to estimate observable index model from Sargent-Sims(1977)," Statistical Software Components RTZ00126, Boston College Department of Economics.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
- Su, Liangjun & Wang, Xia, 2017. "On time-varying factor models: Estimation and testing," Journal of Econometrics, Elsevier, vol. 198(1), pages 84-101.
- Marta Bańbura & Michele Modugno, 2014.
"Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
- Bańbura, Marta & Modugno, Michele, 2010. "Maximum likelihood estimation of factor models on data sets with arbitrary pattern of missing data," Working Paper Series 1189, European Central Bank.
- Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chaohua Dong & Jiti Gao & Oliver Linton & Bin peng, 2020.
"On Time Trend of COVID-19: A Panel Data Study,"
Monash Econometrics and Business Statistics Working Papers
22/20, Monash University, Department of Econometrics and Business Statistics.
- Chaohua Dong & Jiti Gao & Oliver Linton & Bin Peng, 2020. "On the Time Trend of COVID-19: A Panel Data Study," Papers 2006.11060, arXiv.org, revised Jun 2020.
- Dong, C. & Gao, J. & Linton, O. & Peng, B., 2020. "On Time Trend of COVID-19: A Panel Data Study," Cambridge Working Papers in Economics 2065, Faculty of Economics, University of Cambridge.
- Wei, Jie & Chen, Hui, 2020. "Determining the number of factors in approximate factor models by twice K-fold cross validation," Economics Letters, Elsevier, vol. 191(C).
- Artūras Juodis & Simas Kučinskas, 2023. "Quantifying noise in survey expectations," Quantitative Economics, Econometric Society, vol. 14(2), pages 609-650, May.
- Liddle, Brantley & Hasanov, Fakhri J. & Parker, Steven, 2022. "Your mileage may vary: Have road-fuel demand elasticities changed over time in middle-income countries?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 38-53.
- Ke, Shuyao & Phillips, Peter C.B. & Su, Liangjun, 2024. "Robust inference of panel data models with interactive fixed effects under long memory: A frequency domain approach," Journal of Econometrics, Elsevier, vol. 241(2).
- Cahan, Ercument & Bai, Jushan & Ng, Serena, 2023.
"Factor-based imputation of missing values and covariances in panel data of large dimensions,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 113-131.
- Ercument Cahan & Jushan Bai & Serena Ng, 2021. "Factor-Based Imputation of Missing Values and Covariances in Panel Data of Large Dimensions," Papers 2103.03045, arXiv.org, revised Feb 2022.
- Jushan Bai & Serena Ng, 2021.
"Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1746-1763, October.
- Jushan Bai & Serena Ng, 2019. "Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data," Papers 1910.06677, arXiv.org, revised Aug 2021.
- Choi, Jungjun & Kwon, Hyukjun & Liao, Yuan, 2024. "Inference for low-rank completion without sample splitting with application to treatment effect estimation," Journal of Econometrics, Elsevier, vol. 240(1).
- Zhou, Ruichao & Wu, Jianhong, 2023. "Determining the number of change-points in high-dimensional factor models by cross-validation with matrix completion," Economics Letters, Elsevier, vol. 232(C).
- Camacho, Maximo & Lopez-Buenache, German, 2023. "Factor models for large and incomplete data sets with unknown group structure," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1205-1220.
- Liu, Wei & Luo, Lan & Zhou, Ling, 2023. "Online missing value imputation for high-dimensional mixed-type data via generalized factor models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Xiong, Ruoxuan & Pelger, Markus, 2023.
"Large dimensional latent factor modeling with missing observations and applications to causal inference,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
- Yinchu Zhu, 2019. "How well can we learn large factor models without assuming strong factors?," Papers 1910.10382, arXiv.org, revised Nov 2019.
- Jungjun Choi & Hyukjun Kwon & Yuan Liao, 2023. "Inference for Low-rank Completion without Sample Splitting with Application to Treatment Effect Estimation," Papers 2307.16370, arXiv.org.
- Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
- Serena Ng & Susannah Scanlan, 2023. "Constructing High Frequency Economic Indicators by Imputation," Papers 2303.01863, arXiv.org, revised Oct 2023.
- Jiti Gao & Oliver Linton & Bin Peng, 2022. "A Nonparametric Panel Model for Climate Data with Seasonal and Spatial Variation," Monash Econometrics and Business Statistics Working Papers 9/22, Monash University, Department of Econometrics and Business Statistics.
- Victor Chernozhukov & Christian Hansen & Yuan Liao & Yinchu Zhu, 2021. "Inference for Low-Rank Models," Papers 2107.02602, arXiv.org, revised Jan 2023.
- Junting Duan & Markus Pelger & Ruoxuan Xiong, 2023. "Target PCA: Transfer Learning Large Dimensional Panel Data," Papers 2308.15627, arXiv.org.
- Jungjun Choi & Ming Yuan, 2023. "Matrix Completion When Missing Is Not at Random and Its Applications in Causal Panel Data Models," Papers 2308.02364, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
- Pilar Poncela & Esther Ruiz, 2016.
"Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment,"
Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434,
Emerald Group Publishing Limited.
- Poncela, Pilar, 2015. "Small versus big-data factor extraction in Dynamic Factor Models: An empirical assessment," DES - Working Papers. Statistics and Econometrics. WS ws1502, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised May 2024.
- Matteo Barigozzi & Matteo Luciani, 2019.
"Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm,"
Papers
1910.03821, arXiv.org, revised Sep 2024.
- Matteo Barigozzi & Matteo Luciani, 2024. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Finance and Economics Discussion Series 2024-086, Board of Governors of the Federal Reserve System (U.S.).
- Xiong, Ruoxuan & Pelger, Markus, 2023.
"Large dimensional latent factor modeling with missing observations and applications to causal inference,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
- Forni, Mario & Cavicchioli, Maddalena & Lippi, Marco & Zaffaroni, Paolo, 2016. "Eigenvalue Ratio Estimators for the Number of Common Factors," CEPR Discussion Papers 11440, C.E.P.R. Discussion Papers.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014.
"Dynamic factor models: A review of the literature,"
OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2013. "Dynamic factor models: A review of the literature," Post-Print hal-01385974, HAL.
- Barhoumi, K. & Darné, O. & Ferrara, L., 2013. "Dynamic Factor Models: A review of the Literature ," Working papers 430, Banque de France.
- Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
- Barigozzi, Matteo & Hallin, Marc & Luciani, Matteo & Zaffaroni, Paolo, 2024.
"Inferential theory for generalized dynamic factor models,"
Journal of Econometrics, Elsevier, vol. 239(2).
- Matteo Barigozzi & Marc Hallin & Matteo Luciani & Paolo Zaffaroni, 2021. "Inferential Theory for Generalized Dynamic Factor Models," Working Papers ECARES 2021-20, ULB -- Universite Libre de Bruxelles.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015.
"Dynamic factor models with infinite-dimensional factor spaces: One-sided representations,"
Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
- Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2012. "Dynamic Factor Models with Infinite-Dimensional Factor Space: One-Sided Representations," Working Papers ECARES ECARES 2012-046, ULB -- Universite Libre de Bruxelles.
- Martin Solberger & Erik Spånberg, 2020. "Estimating a Dynamic Factor Model in EViews Using the Kalman Filter and Smoother," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 875-900, March.
- Matteo Barigozzi & Marc Hallin, 2023.
"Dynamic Factor Models: a Genealogy,"
Papers
2310.17278, arXiv.org, revised Jan 2024.
- Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Working Papers ECARES 2023-15, ULB -- Universite Libre de Bruxelles.
- Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
- Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
- Rua, António, 2017.
"A wavelet-based multivariate multiscale approach for forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
- António Rua, 2016. "A wavelet-based multivariate multiscale approach for forecasting," Working Papers w201612, Banco de Portugal, Economics and Research Department.
- Lippi, Marco & Deistler, Manfred & Anderson, Brian, 2023. "High-Dimensional Dynamic Factor Models: A Selective Survey and Lines of Future Research," Econometrics and Statistics, Elsevier, vol. 26(C), pages 3-16.
- Miao, Ke & Phillips, Peter C.B. & Su, Liangjun, 2023.
"High-dimensional VARs with common factors,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 155-183.
- Ke Miao & Peter C.B. Phillips & Liangjun Su, 2020. "High-Dimensional VARs with Common Factors," Cowles Foundation Discussion Papers 2252, Cowles Foundation for Research in Economics, Yale University.
More about this item
Keywords
Cross-validation; Expectation-Maximization (EM) algorithm; Factor models; Matrix completion; Missing at random; Principal component analysis; Singular value decomposition;All these keywords.
JEL classification:
- C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
- C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
- C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2019-02-11 (Econometrics)
- NEP-ETS-2019-02-11 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:smuesw:2019_004. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cheong Pei Qi (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.