IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v117y2013icp313-331.html
   My bibliography  Save this article

Correlation tests for high-dimensional data using extended cross-data-matrix methodology

Author

Listed:
  • Yata, Kazuyoshi
  • Aoshima, Makoto

Abstract

In this paper, we consider tests of correlation when the sample size is much lower than the dimension. We propose a new estimation methodology called the extended cross-data-matrix methodology. By applying the method, we give a new test statistic for high-dimensional correlations. We show that the test statistic is asymptotically normal when p→∞ and n→∞. We propose a test procedure along with sample size determination to ensure both prespecified size and power for testing high-dimensional correlations. We further develop a multiple testing procedure to control both family wise error rate and power. Finally, we demonstrate how the test procedures perform in actual data analyses by using two microarray data sets.

Suggested Citation

  • Yata, Kazuyoshi & Aoshima, Makoto, 2013. "Correlation tests for high-dimensional data using extended cross-data-matrix methodology," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 313-331.
  • Handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:313-331
    DOI: 10.1016/j.jmva.2013.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13000341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hall & J. S. Marron & Amnon Neeman, 2005. "Geometric representation of high dimension, low sample size data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 427-444, June.
    2. Zhong, Ping-Shou & Chen, Song Xi, 2011. "Tests for High-Dimensional Regression Coefficients With Factorial Designs," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 260-274.
    3. Baik, Jinho & Silverstein, Jack W., 2006. "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1382-1408, July.
    4. Yata, Kazuyoshi & Aoshima, Makoto, 2012. "Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 193-215.
    5. Yata, Kazuyoshi & Aoshima, Makoto, 2010. "Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2060-2077, October.
    6. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    7. Jeongyoun Ahn & J. S. Marron & Keith M. Muller & Yueh-Yun Chi, 2007. "The high-dimension, low-sample-size geometric representation holds under mild conditions," Biometrika, Biometrika Trust, vol. 94(3), pages 760-766.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shao-Hsuan & Huang, Su-Yun & Chen, Ting-Li, 2020. "On asymptotic normality of cross data matrix-based PCA in high dimension low sample size," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    2. Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
    3. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    4. Makoto Aoshima & Kazuyoshi Yata, 2014. "A distance-based, misclassification rate adjusted classifier for multiclass, high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 983-1010, October.
    5. Yata, Kazuyoshi & Aoshima, Makoto, 2016. "High-dimensional inference on covariance structures via the extended cross-data-matrix methodology," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 151-166.
    6. Makoto Aoshima & Kazuyoshi Yata, 2015. "Asymptotic Normality for Inference on Multisample, High-Dimensional Mean Vectors Under Mild Conditions," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 419-439, June.
    7. Aki Ishii & Kazuyoshi Yata & Makoto Aoshima, 2021. "Hypothesis tests for high-dimensional covariance structures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 599-622, June.
    8. Makoto Aoshima & Kazuyoshi Yata, 2019. "High-Dimensional Quadratic Classifiers in Non-sparse Settings," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 663-682, September.
    9. Ivair R. Silva & Yan Zhuang & Julio C. A. da Silva Junior, 2022. "Kronecker delta method for testing independence between two vectors in high-dimension," Statistical Papers, Springer, vol. 63(2), pages 343-365, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "PCA consistency for the power spiked model in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 334-354.
    2. Makoto Aoshima & Kazuyoshi Yata, 2014. "A distance-based, misclassification rate adjusted classifier for multiclass, high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 983-1010, October.
    3. Jung, Sungkyu & Sen, Arusharka & Marron, J.S., 2012. "Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 190-203.
    4. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    5. Ishii, Aki & Yata, Kazuyoshi & Aoshima, Makoto, 2022. "Geometric classifiers for high-dimensional noisy data," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Yata, Kazuyoshi & Aoshima, Makoto, 2012. "Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 193-215.
    7. Wang, Shao-Hsuan & Huang, Su-Yun & Chen, Ting-Li, 2020. "On asymptotic normality of cross data matrix-based PCA in high dimension low sample size," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    8. Makoto Aoshima & Kazuyoshi Yata, 2019. "Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 473-503, June.
    9. Borysov, Petro & Hannig, Jan & Marron, J.S., 2014. "Asymptotics of hierarchical clustering for growing dimension," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 465-479.
    10. Shen, Dan & Shen, Haipeng & Marron, J.S., 2013. "Consistency of sparse PCA in High Dimension, Low Sample Size contexts," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 317-333.
    11. Yata, Kazuyoshi & Aoshima, Makoto, 2016. "High-dimensional inference on covariance structures via the extended cross-data-matrix methodology," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 151-166.
    12. Nakayama, Yugo & Yata, Kazuyoshi & Aoshima, Makoto, 2021. "Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    13. Kazuyoshi Yata & Makoto Aoshima, 2020. "Geometric consistency of principal component scores for high‐dimensional mixture models and its application," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 899-921, September.
    14. Yata, Kazuyoshi & Aoshima, Makoto, 2010. "Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2060-2077, October.
    15. Jonathan Gillard & Emily O’Riordan & Anatoly Zhigljavsky, 2023. "Polynomial whitening for high-dimensional data," Computational Statistics, Springer, vol. 38(3), pages 1427-1461, September.
    16. Aki Ishii & Kazuyoshi Yata & Makoto Aoshima, 2021. "Hypothesis tests for high-dimensional covariance structures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 599-622, June.
    17. Lee, Myung Hee, 2012. "On the border of extreme and mild spiked models in the HDLSS framework," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 162-168.
    18. Kazuyoshi Yata & Makoto Aoshima, 2012. "Inference on High-Dimensional Mean Vectors with Fewer Observations Than the Dimension," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 459-476, September.
    19. Saha, Enakshi & Sarkar, Soham & Ghosh, Anil K., 2017. "Some high-dimensional one-sample tests based on functions of interpoint distances," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 83-95.
    20. Yugo Nakayama & Kazuyoshi Yata & Makoto Aoshima, 2020. "Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1257-1286, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:313-331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.