IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v69y2007i4p607-623.html
   My bibliography  Save this article

Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression

Author

Listed:
  • Vivekananda Roy
  • James P. Hobert

Abstract

Summary. Consider a probit regression problem in which Y1, …, Yn are independent Bernoulli random variables such that where xi is a p‐dimensional vector of known covariates that are associated with Yi, β is a p‐dimensional vector of unknown regression coefficients and Φ(·) denotes the standard normal distribution function. We study Markov chain Monte Carlo algorithms for exploring the intractable posterior density that results when the probit regression likelihood is combined with a flat prior on β. We prove that Albert and Chib's data augmentation algorithm and Liu and Wu's PX‐DA algorithm both converge at a geometric rate, which ensures the existence of central limit theorems for ergodic averages under a second‐moment condition. Although these two algorithms are essentially equivalent in terms of computational complexity, results of Hobert and Marchev imply that the PX‐DA algorithm is theoretically more efficient in the sense that the asymptotic variance in the central limit theorem under the PX‐DA algorithm is no larger than that under Albert and Chib's algorithm. We also construct minorization conditions that allow us to exploit regenerative simulation techniques for the consistent estimation of asymptotic variances. As an illustration, we apply our results to van Dyk and Meng's lupus data. This example demonstrates that huge gains in efficiency are possible by using the PX‐DA algorithm instead of Albert and Chib's algorithm.

Suggested Citation

  • Vivekananda Roy & James P. Hobert, 2007. "Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 607-623, September.
  • Handle: RePEc:bla:jorssb:v:69:y:2007:i:4:p:607-623
    DOI: 10.1111/j.1467-9868.2007.00602.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2007.00602.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2007.00602.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James P. Hobert & Christian P. Robert & Vivekanada Roy, 2010. "Improving the Convergence Properties of the Data Augmentation Algorithm with an Application to Bayesian Mixture Modelling," Working Papers 2010-29, Center for Research in Economics and Statistics.
    2. Roy, Vivekananda, 2014. "Efficient estimation of the link function parameter in a robust Bayesian binary regression model," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 87-102.
    3. Quan Zhou & Jun Yang & Dootika Vats & Gareth O. Roberts & Jeffrey S. Rosenthal, 2022. "Dimension‐free mixing for high‐dimensional Bayesian variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1751-1784, November.
    4. Johnson, Alicia A. & Jones, Galin L., 2015. "Geometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 325-342.
    5. Higgs, Megan Dailey & Hoeting, Jennifer A., 2010. "A clipped latent variable model for spatially correlated ordered categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1999-2011, August.
    6. Chakraborty, Saptarshi & Bhattacharya, Suman K. & Khare, Kshitij, 2022. "Estimating accuracy of the MCMC variance estimator: Asymptotic normality for batch means estimators," Statistics & Probability Letters, Elsevier, vol. 183(C).
    7. Chu, Amanda M.Y. & Omori, Yasuhiro & So, Hing-yu & So, Mike K.P., 2023. "A Multivariate Randomized Response Model for Sensitive Binary Data," Econometrics and Statistics, Elsevier, vol. 27(C), pages 16-35.
    8. Mário de Castro & Ming‐Hui Chen & Yuanye Zhang, 2015. "Bayesian path specific frailty models for multi‐state survival data with applications," Biometrics, The International Biometric Society, vol. 71(3), pages 760-771, September.
    9. Wang, Xin & Roy, Vivekananda, 2018. "Analysis of the Pólya-Gamma block Gibbs sampler for Bayesian logistic linear mixed models," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 251-256.
    10. Chen, Ming-Hui & Ibrahim, Joseph G. & Shao, Qi-Man, 2009. "Maximum likelihood inference for the Cox regression model with applications to missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2018-2030, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:69:y:2007:i:4:p:607-623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.