IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v70y2002i2p583-601.html
   My bibliography  Save this article

Envelope Theorems for Arbitrary Choice Sets

Author

Listed:
  • Paul Milgrom

    (Department of Economics, New York University, 269 Mercer Street, New York, NY 10003, U.S.A.)

  • Ilya Segal

    (Department of Economics, New York University, 269 Mercer Street, New York, NY 10003, U.S.A.)

Abstract

The standard envelope theorems apply to choice sets with convex and topological structure, providing sufficient conditions for the value function to be differentiable in a parameter and characterizing its derivative. This paper studies optimization with arbitrary choice sets and shows that the traditional envelope formula holds at any differentiability point of the value function. We also provide conditions for the value function to be, variously, absolutely continuous, left- and right-differentiable, or fully differentiable. These results are applied to mechanism design, convex programming, continuous optimization problems, saddle-point problems, problems with parameterized constraints, and optimal stopping problems. Copyright The Econometric Society 2002.

Suggested Citation

  • Paul Milgrom & Ilya Segal, 2002. "Envelope Theorems for Arbitrary Choice Sets," Econometrica, Econometric Society, vol. 70(2), pages 583-601, March.
  • Handle: RePEc:ecm:emetrp:v:70:y:2002:i:2:p:583-601
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:70:y:2002:i:2:p:583-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.