IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v22y1998i2p179-207.html
   My bibliography  Save this article

A model of learning and emulation with artificial adaptive agents

Author

Listed:
  • Bullard, James
  • Duffy, John

Abstract

We study adaptive learning behavior in a sequence of n-period endowment overlapping generations economies with fiat currency, where n refers to the number of periods in agents' lifetimes. Agents initially have heterogeneous beliefs and seek to form multi-step-ahead forecasts of future prices using a forecast rule chosen from a vast set of possible forecast rules. Agents take optimal actions given their forecasts of future prices. They learn in every period by creating new forecast rules and by emulating the forecast rules of other agents. Computational experiments with artificial adaptive agents are conducted. These experiments yield three qualitatively different types of outcomes. In one, the initially heterogeneous population of artificial agents learns to coordinate on a low inflation, stationary perfect foresight equilibrium. In another, we observe persistent currency collapse. The third outcome is a lack of coordination within the allotted time frame. One possible outcome, a stationary perfect foresight equilibrium with a relatively high inflation rate, is never observed.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Bullard, James & Duffy, John, 1998. "A model of learning and emulation with artificial adaptive agents," Journal of Economic Dynamics and Control, Elsevier, vol. 22(2), pages 179-207, February.
  • Handle: RePEc:eee:dyncon:v:22:y:1998:i:2:p:179-207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(97)00072-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    2. Ho, Teck-Hua, 1996. "Finite automata play repeated prisoner's dilemma with information processing costs," Journal of Economic Dynamics and Control, Elsevier, vol. 20(1-3), pages 173-207.
    3. Binmore, Kenneth G. & Samuelson, Larry, 1992. "Evolutionary stability in repeated games played by finite automata," Journal of Economic Theory, Elsevier, vol. 57(2), pages 278-305, August.
    4. James B. Bullard, 1992. "Samuelson's model of money with n-period lifetimes," Review, Federal Reserve Bank of St. Louis, issue May, pages 67-82.
    5. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    6. Arifovic, Jasmina, 1995. "Genetic algorithms and inflationary economies," Journal of Monetary Economics, Elsevier, vol. 36(1), pages 219-243, August.
    7. Marimon, Ramon & Sunder, Shyam, 1993. "Indeterminacy of Equilibria in a Hyperinflationary World: Experimental Evidence," Econometrica, Econometric Society, vol. 61(5), pages 1073-1107, September.
    8. Rust, John & Miller, John H. & Palmer, Richard, 1994. "Characterizing effective trading strategies : Insights from a computerized double auction tournament," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 61-96, January.
    9. Andreoni James & Miller John H., 1995. "Auctions with Artificial Adaptive Agents," Games and Economic Behavior, Elsevier, vol. 10(1), pages 39-64, July.
    10. Binmore, K. & Samuelson, L., 1990. "Evolutionary Stability In Repeated Games Played By Finite Automata," Working papers 90-29, Wisconsin Madison - Social Systems.
    11. Holland, John H & Miller, John H, 1991. "Artificial Adaptive Agents in Economic Theory," American Economic Review, American Economic Association, vol. 81(2), pages 365-371, May.
    12. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-541, June.
    13. Miller, John H., 1996. "The coevolution of automata in the repeated Prisoner's Dilemma," Journal of Economic Behavior & Organization, Elsevier, vol. 29(1), pages 87-112, January.
    14. Barnett,William A. & Geweke,John & Shell,Karl (ed.), 1989. "Economic Complexity: Chaos, Sunspots, Bubbles, and Nonlinearity," Cambridge Books, Cambridge University Press, number 9780521355636, January.
    15. Marimon, Ramon & McGrattan, Ellen & Sargent, Thomas J., 1990. "Money as a medium of exchange in an economy with artificially intelligent agents," Journal of Economic Dynamics and Control, Elsevier, vol. 14(2), pages 329-373, May.
    16. Dixon,Huw David & Rankin,Neil, 1995. "The New Macroeconomics," Cambridge Books, Cambridge University Press, number 9780521479479, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jasmina Arifovic & James B. Bullard & John Duffy, 1995. "Learning in a model of economic growth and development," Working Papers 1995-017, Federal Reserve Bank of St. Louis.
    2. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    3. Marco Casari, 2002. "Can genetic algorithms explain experimental anomalies? An application to common property resources," UFAE and IAE Working Papers 542.02, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    4. Leigh Tesfatsion, 2002. "Agent-Based Computational Economics," Computational Economics 0203001, University Library of Munich, Germany, revised 15 Aug 2002.
    5. Chen, Shu-Heng, 2012. "Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 1-25.
    6. Shu-Heng Chen & Chia-Hsuan Yeh, 1999. "Evolving Traders and the Faculty of the Business School: A New Architecture of the Artificial Stock Market," Computing in Economics and Finance 1999 613, Society for Computational Economics.
    7. Arifovic, Jasmina, 2001. "Evolutionary dynamics of currency substitution," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 395-417, March.
    8. Matteo Richiardi & Roberto Leombruni & Nicole J. Saam & Michele Sonnessa, 2006. "A Common Protocol for Agent-Based Social Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-15.
    9. Marco Casari, 2003. "Does bounded rationality lead to individual heterogeneity? The impact of the experimentation process and of memory constraints," UFAE and IAE Working Papers 583.03, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    10. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    11. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2001. "Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 363-393, March.
    12. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    13. Bullard, James & Duffy, John, 1999. "Using Genetic Algorithms to Model the Evolution of Heterogeneous Beliefs," Computational Economics, Springer;Society for Computational Economics, vol. 13(1), pages 41-60, February.
    14. Jie-Shin Lin & Chris Birchenhall, 2000. "Learning And Adaptive Artificial Agents: An Analysis Of Evolutionary Economic Models," Computing in Economics and Finance 2000 327, Society for Computational Economics.
    15. Casari, Marco, 2008. "Markets in equilibrium with firms out of equilibrium: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 65(2), pages 261-276, February.
    16. Tesfatsion, Leigh, 1998. "Teaching Agent-Based Computational Economics to Graduate Students," ISU General Staff Papers 199807010700001043, Iowa State University, Department of Economics.
    17. Tesfatsion, Leigh, 1995. "How Economists Can Get Alife," Economic Reports 18196, Iowa State University, Department of Economics.
    18. Arifovic, Jasmina & Eaton, B. Curtis, 1998. "The evolution of type communication in a sender/receiver game of common interest with cheap talk," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1187-1207, August.
    19. Leombruni, Roberto & Richiardi, Matteo, 2005. "Why are economists sceptical about agent-based simulations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 103-109.
    20. Georges, Christophre, 2006. "Learning with misspecification in an artificial currency market," Journal of Economic Behavior & Organization, Elsevier, vol. 60(1), pages 70-84, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:22:y:1998:i:2:p:179-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.